AD-A235 196

MSTRONG

LABORATORY

COMPLIANCE TESTING OF GRISSOM AFB CENTRAL HEATING PLANT COAL-FIRED BOILERS 3, 4 AND 5 GRISSOM AFB IN

Ronald W. Vaughn, Captain, USAF, BSC

OCCUPATIONAL AND ENVIRONMENTAL HEALTH DIRECTORATE
Brooks Air Force Base, Texas 78205-5000

March 1991

Final Technical Report for Period 3 December 1990 - 13 December 1990

Approved for public release; distribution is unlimited.

DIR FILE COPY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601 =

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

Air Force installations may direct requests for copies of this report to: Armstrong Laboratory, Occupational and Environmental Health Directorate Library, Brooks AFB TX 78235-5000.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

RONALD W. VAUGHA, Capt, USAF, BSC Consultant, Environmental Quality Branch

EDWIN C. BANNER III, Col, USAF, BSC Chief, Bioenvironmental Engineering Division

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information including suggestions for reducing this burden. To Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 12(4, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (10704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE March 1991	3. REPORT TYPE	3-13 Dec 90
4. TITLE AND SUBTITLE Compliance Testing of Gr Plant Coal-Fired Boilers 6. AUTHOR(S)			5. FUNDING NUMBERS
Ronald W. Vaughn, Capt, I	JSAF, BSC		
7. PERFORMING ORGANIZATION NAME Armstrong Laboratory	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Occupational and Environm Brooks AFB TX 78235-5000 (Formerly: AF Occupation Health Laboratory (AF0EHL) nal and Environmen		AL-TR-91-0021
9. sponsoring/monitoring agency Same as Blk 7	NAME(S) AND ADDRESS(I	ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
Statement A. Unlimited,	approved for publ	ic release	
13. ABSTRACT (Maximum 200 words)			
At the request of HQ SAC/ emissions) of boiler 3, 4 accomplished 3-13 Dec 90. regards to Indiana Admini Article 5, Opacity Regula were all tested through t	and 5 in the Gri The survey was strative Code, Ti Itions, and Articl	ssom AFB Centra conducted to de tle 325 - Air Po	l Heating Plant was termine compliance with
Visible emissions from th However, particulate emis	e three boilers m sions from the th	et applicable op ree boilers were	pacity regulations. e above their applicable

14. SUBJECT TERMS Compliance Testing Stack Sampling Stack Emissions		Source Emission Testing Air Pollution Vaughn	15. NUMBER OF PAGES 114 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFIC OF THIS PAGE	ATION 19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	UL

NSN 7540-01-280-5500

emission standards.

(This page left blank)

CONTENTS

			Page
	SF 298		í
	Illustrations	S	iv
I.	INTRODUCTION		1
II.	DISCUSSION		1
III.	CONCLUSIONS		9
IV.	RECOMMENDATIO	ONS	9
	References		11
	Appendix		
	A B C D E F G H I J K L	Letters of Request Personnel Information State Regulations Plant Operating Logs Coal Analysis Port Locations and Sampling Points Boiler 3 Field Data Boiler 4 Field Data Boiler 5 Field Data Calibration Data EPA Computer Program Emissions Calculations EPA Method 9 Certification	13 17 19 35 39 49 51 63 75 87 103 111
	Distribution	List	114

Illustrations

Figure	Title	Page
1	View of Scrubbers and Bypass Stack	3
2	Flue Gas Flow Diagram	4
3	ORSAT Sampling Train	7
4	ORSAT Apparatus	7
5	Particulate Sampling Train	8

I. INTRODUCTION

On 3 to 13 Dec 1990, source emission testing for particulate and visible emissions was conducted on coal-fired boilers 3, 4 and 5 at the Grissom AFB Central Heating Plant by the Air Quality Function of the Air Force Occupational and Environmental Health Laboratory (AFOEHL). This survey was requested by 305th CSG/DE through HQ SAC/SGPB to determine particulate emission compliance status with regards to Indiana Administrative Code, Title 325 - Air Pollution Control Board, Article 5, Opacity Regulations (325 IAC 5), and Article 6, Particulate Regulations (325 IAC 6). (Appendix A) Personnel involved with on-site testing are listed in Appendix B.

II. DISCUSSION

A. Background

On 7 Nov 1986, the Director, Air and Radiation Division, U.S. Environmental Protection Agency (EPA), Region V, issued a notice of violation (NOV) to Grissom AFB for violation of 325 IAC 5, Opacity Regulations. The NOV was based on information submitted by the State of Indiana Department of Environmental Management and the EPA. Observations indicated that oil-fired boiler 1 and coal-fired boilers 3 and 4 (boiler 5 was out of service during the State Observations) were out of compliance with respect to visible emissions.

To demonstrate and maintain compliance with 325 IAC 5 and other rules set forth by the Indiana Air Pollution Control Board, EPA, Region V required Grissom AFB to: (1) conduct stack particulate emission testing on boilers 3, 4 and 5 (when operational) as specified in Title 40, Code of Federal Regulations, Part 60 (40 CFR 60), Appendix A, Reference Method 5, (2) determine visible emissions from boilers 1-4 and 5 (when operational) as specified in 40 CFR 60, Appendix A, Reference Method 9 and (3) request stack testing following future major modifications to the central heating plant.

On 30 Nov 1990, a modification to the heating plant's boilers 3, 4 and 5 was completed. This compliance testing project met the Indiana Air Pollution Control Board requirement to test after major modifications to the central heating plant. Secondly, Grissom AFB was notified by the State that the emission limits specified during previous AFOEHL testing (Nov 87, Mar 88 and Feb 89) were erroneous. The correct emission limits are presented in paragraph C.

B. Site Description

The Central Heating Plant operates a total of five boilers for steam production:

Note: This report was accomplished by the Air Force Occupational and Environmental Health Laboratory (AFOEHL), which is now the Armstrong Laboratory, Occupational and Environmental Health Directorate.

Boiler No. Manufacturer	Steam Capacity (1b/hr)	Year Installed	<u>Fuel</u>
1 Springfield Boiler Co.	40,000	1955	oil
2 Springfield Boiler Co.	40,000	1955	oil
3 Springfield Boiler Co.	40,000	1955	coal
4 E. Keeler Co.	40,000	1960	coal
5 Zurn Ind.	65,000	1980	coal

Coal-fired boilers 3, 4 and 5 are spreader-stoker fired units, each having forced-draft and induced-draft fans and mechanical fly ash collection systems. Each unit is fitted with a steam-operated soot blower to remove fly ash and soot from the heat exchanger tubing. Boiler 5 is also fitted with an economizer to further increase operating efficiency by preheating the feed water using exhaust gas heat.

Air pollution control consists of individual multiclone dust collectors on each boiler and an optional wet scrubber common to the three coal-fired boilers. The multiclone dust collectors on boilers 3, 4 and 5 were manufactured by Western Precipitation Division - Joy Manufacturing Co. The collector on both boiler 3 and 4 is a model 9VM-10 and consists of 36 nine-inch diameter cyclonic collectors operating in parallel. The collector on boiler 5 is a model 9VMU-10 and consists of 48 nine-inch diameter cyclonic collectors operating in parallel. Each unit is located in the boiler exhaust duct upstream of the induced-draft fan. Ash collected by the multiclones is carried by gravity to a hopper.

The exhaust effluent from each boiler is ducted to a common breeching and can be routed to the wet-scrubber or to a bypass stack. The scrubber is a double-alkali flue-gas desulfurization system using soda ash (sodium carbonate) in the scrubbing fluid and lime (calcium hydroxide) slurry for regeneration of the scrubbing liquid. The primary purpose of the unit is to remove sulfur from the flue gas; a secondary purpose is to remove particulates from the flue gas. The system has two identical scrubber units, A and B, each designed to handle 50% of the flue gas from the three coal-fired boilers. Each unit has a 5 foot (ft) diameter stack and terminates about 70 feet above the ground. There is no requirement at this time to use the scrubber system because of the low-sulfur coal being used by the plant. The bypass stack has a 5.5 ft diameter and terminates approximately 70 ft above ground level. The scrubber stacks and the bypass stack can be seen in Figure 1. A flue gas flow diagram is shown in Figure 2.

C. Applicable Standards

The monitoring requirements, opacity regulations and particulate regulations are defined under 325 IAC 3, 5 and 6, respectively. Article 3 states that emissions test shall be conducted in accordance with procedures and analysis methods specified in chapter 40, Code of Federal Regulations, Part 60, Appendix A. EPA Methods 1--5 were used for the determination of particulate emissions and Method 9 for visible emissions.

Figure 1. Yiew of Scrubbers and Bypass Stack

Figure 2. Flue Gas Flow Diagram

Article 5 states that visible emissions shall not exceed an average of 40% opacity in 24 consecutive readings or 60% opacity for more than a cumulative total of 15 minutes (60 readings) in a 6-hour period. When conducting a soot blowing operation, visible emissions may exceed these standards except that visible emissions may not exceed 60% opacity nor shall visible emissions in excess of the standards continue for more than 5 minutes in any 60 minute period.

Under 325 IAC 6, the maximum allowable particulate emission rate from combustion of fuel for indirect heating facilities (either existing and in operation or with permits to construct prior to the effective date of 325 IAC 6, 26 Sep 1980) is determined by the following equation:

Pt =
$$\frac{C \times a \times h}{76.5 \times 00.75 \times N0.25}$$

Where:

Pt = Pounds of particulate matter emitted per million BTU heat input (1b/mmBTU).

C = Maximum ground level concentration with respect to distance from the point source at the "critical" wind speed for level terrain (50 micrograms per cubic meter - provided in standard).

Q = Total source maximum operating capacity rating in million BTU per hour (mmBTU/hr) heat input.

N = Number of stacks in fuel burning operation.

a = Plume rise factor (0.67 is used for Q less than or equal to 1,000 mmBTU/hr heat input).

h = Stack height in feet.

The limits on particulate emissions determined by the equation and values of the variables applicable to this facility are 0.47 lb/mmBTU for boilers 3 and 4 (operating prior to 8 Jun 1972) and 0.37 lb/mmBTU for boiler 5 (constructed after 8 Jun 1972). State regulations are presented in Appendix C.

D. Sampling Methods and Procedures

Boilers 3, 4 and 5 were tested through the bypass stack. Coordination was made with plant personnel to try and operate each boiler at 95% capacity or greater during testing. One of the three runs which comprised a complete test included a soot blow; this is indicated on the field data sheets. Boiler operating logs for the test periods are provided in Appendix D. These logs indicate hourly steam output and coal usage. Laboratory results for the coal analysis are provided in Appendix E. Each coal sample represents an integrated sample collected over a particular one hour test run as noted on the analysis sheet.

325 IAC 3 requires that all emissions tests be conducted in accordance with the procedures and analysis methods specified in 40 CFR 60, Appendix A.

Methods 1-5. Therefore, test methods, equipment, sample train preparations, sampling and recovery, calibration requirements and quality assurance were done in accordance with the methods and procedures outlined in 40 CFR 60, Appendix A.

Sampling ports were in place on the bypass stack and were located 2 stack diameters upstream from the stack exit and 7 stack diameters downstream from the nearest disturbance (common breeching inlet). Based on a 5.5 ft inside stack diameter, port location and type of sample (particulate), a total of 12 traverse points were determined for emission evaluation. The sampling time for each sampling run was 60 minutes, and the the sample time per traverse point was 5 minutes. Illustration showing port locations and sampling points is provided in Appendix F.

Prior to each emission test, a preliminary velocity pressure traverse was accomplished and cyclonic flow was determined. For acceptable flow conditions to exist in a stack, the average of the absolute values of the flow angles taken at each traverse point must be less than or equal to 20 degrees. The resulting flow angles in the bypass stack for boilers 3, 4 and 5 were 6, 6 and 5 respectively.

During each sample run, a flue gas sample for ORSAT analysis (measures oxygen, and carbon dioxide for stack gas molecular determination and emissions correction) was taken. ORSAT sampling and analysis equipment are shown in Figures 3 and 4. Flue gas moisture content, also needed for determination of gas molecular weight, was determined during particulate sampling.

Particulate samples were collected using the the sampling train shown in Figure 5. The train consisted of a buttonhook probe nozzle, heated inconel probe, heated glass filter, impingers and pumping and metering device. The nozzle was sized prior to each test so that the gas could be sampled isokinectically; in other words, the velocity at the nozzle tip was the same as the the stack gas velocity at each point sampled. Flue gas velocity pressure was measured at the nozzle tip using a Type-S Pitot tube connected to 10-inch inclined-vertical manometer. Type K thermocouples were used to measure flue gas as well as sampling train temperatures. The probe was heated to minimize moisture condensation. The heated filter was used to collect particulate materials. The impinger train consisted of the following components.

a. first, third and fourth impingers: modified Greenburg-Smith type

b. second impinger: standard Greenburg-Smith was used as a condenser to collect stack gas moisture. The pumping and metering system was used to control and monitor the sample gas flow rate. Equipment calibration data is presented in Appendix J.

Particulate emissions calculations were done using "Source Test Calculation and Check programs for Hewlett-Packard 41 Calculators" (EPA-340/1-85-018) developed by the EPA Office of Air Quality Planning and Standards, Research Triangle Park NC. This is our standard method for calculating emissions data. Emissions calculations from the EPA programs are found in Appendix K.

Figure 3. Orsat Sampling Train

Figure 4. Orsat Apparatus

Figure 5. Particulate Sampling Train

Visible emissions determinations were accomplished during each sample run. Visible emissions results are presented in Appendixes G through I.

III. CONCLUSIONS

Visible emissions averaged less than 40% for all runs except for time periods where soot blows occurred. Soot blows did cause opacity to exceed 60% but not for more than a five-minute period.

The table provides operating parameters for boilers 3, 4, and 5 during testing and the resultant particulate emission rates determined from these tests. Results indicate the three boilers emission rates were above their applicable emission standards.

We believe that many factors contributed to the boilers not meeting their applicable standards:

- 1. The heating plant's automation project had not been completed. Therefore, plant personnel were unable to monitor and/or control the plant's operating parameters.
- 2. Incomplete combustion of coal. This is possibly caused by too much excess oxygen or the physical size of the coal.
- 3. Mechanical problems with the multiclone dust collectors on each boiler.

IV. RECOMMENDATIONS

It is our recommendation that boilers 3, 4, and 5 be retested after the heating plant's automation project is completed and operation optimized. All aspects of the system (boiler, particulate control devices, etc.) should be evaluated for proper operation prior to testing.

Table. Emission Survey Results

	(MILITARY)	QN.	RUN	CAPACITY (1)	BLOW	COAL HEAT ALUE (BTU/1b)	COAL USE (1b/hr)	(mmBTU/hr)	PH EMISSIONS (1b/hr)	FLUE GAS	9M EMISSIONS CORRECTED TO	VISIBLE EMISSIONS (% OPACITY)
6 Dec 90	1025		-	95.0	×	11677	3814	44.5	122.4	7.8	4.23	17.2
6 Dec 96	1505	•	~	94.9		11363	3614	43.3	21.6	5.7	1.05	30.2
6 Dec 90	1710		•	93.5		11901	3814	45.4	17.8		0.94	1.12
				AVG 94.3					AVG 53.9		AVG 2.07	
10 Dec 90	5000	•	-	25	*	11641	3339	38.9	33.4		1.16	11.4
10 Dec 90	1025	-	~	17.2		11614	3339	38.8	12.4	7.8	0.49	19.4
10 Dec 90	1235	•	•	78.4		11334	3339	37.8	19.2		0.57	4.8
				AVG 76.9					AVG 20.3		AVG 0.75	
11 Dec 90	\$160	•	-	106	×	12152	5733	69.7	73.6	6.3	1.53	8 .2
11 Dec 90	1320	so.	~	85.9		11931	5733	68.4	70.7		1.62	10.2
11 Dec 90	1525	•	•	65.3		12117	5733	69.5	119.1	7.3	2.82	16.4
				AVG 93.1					AVG 87.8		AVG 2.06	

. PARTICULATE EMISSIONS

REFERENCES

- 1. "Standards of Performance for New Stationary Sources," Title 40, Part 60, Code of Federal Regulations, July 1, 1989.
- 2. Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, December 1984.
- 3. Source Test Calculation and Check Programs for the Hewlett-Packard 41 Calculators. U.S. Environmental Protection Agency, EPA-340/1-85-018, Research Triangle Park, North Carolina, May 1987.

(This page left blank)

APPENDIX A
Letters of Request

DEPARTMENT OF THE AIR FORCE

HEADQUARTERS 305TH COMBAT SUPPORT GROUP (SAC) GRISSOM AIR FORCE BASE, INDIANA 46971-5000

DEEV

2 2 AUG 1990

SUBJECT

Request to Reschedule Heat Plant Stack Testing

AF OEHL/EQA TO Brooks AFB TX 78235

> Thank you for scheduling our heat plant stack emissions tests for 24 Oct 90. However, circumstances force us to request you reschedule your tests until after 30 Nov 90 and up to 1 Mar 91. Construction delays in the installation of new heat plant controls make testing before 30 Nov 90 unworkable.

2. Our POC is Mr. Ruel Burns, BSN 928-4596.

Colonel, USAF

Commander

cc: 305 AREFW/JA

305 CES/DEEC

305 STRAT Clinic/SGPB

DEPARTMENT OF THE AIR FORCE HEADQUARTERS STRATEGIC AIR COMMAND OFFUTT AIR FORCE BASE, NEBRASKA 68113-5001

REPLY TO ATTH. OF: SGPB

1 8 MAR 1990

SUBJECT: Request for Emergency Heat Plant Emissions Testing

TO AFOEHL/CC

We support the request from the 305th CSG/DE and request you give priority to sampling the three coal-fired boilers by November 1990. Please contact Mr. Ruel Burns, AUTOVON 928-2225, to make the initial arrangements so all the boilers can be operating during your visit. Please respond directly to the 305th CSG/DE and 305th Strat Clinic/SGPB. Please forward to me an information copy of your acceptance.

RONALD L. SCHILLER, Colonel, USAF, BSC

RONALD L. SCHILLER, Colonel, USAF, BSC Chief, Bioenvironmental Engineering Division Office of the Surgeon 1 Atch 305th CSG/DE Ltr, 2 Mar 90

cc: HQ AFSC/SGPB w/Atch
AFOEHL/EQ w/Atch
305th Strat Clinic/SGPB
w/Atch
305th CSG/DE w/o Atch

DEPARTMENT OF THE AIR FORCE

HEADQUARTERS 305TH COMBAT SUPPORT GROUP (SAC)
GRISSOM AIR FORCE BASE, INDIANA 46971-5000

REPLY TO

DE

2 MAR 1990

SUBJECT

Request for Emergency Heat Plant Emissions Testing

O 305 STRAT CLINIC/SGPB HQ SAC/SGPB AF OEHL/CC IN TURN

- 1. Request the Air Force Occupational and Environmental Health Laboratory (AFOEHL) conduct particulate matter stack sampling of the Grissom AFB heat plant's three coal-fired boilers by November 1990. Sampling is necessary to demonstrate compliance with the Indiana Air Pollution Control Board rules for particulate emissions and the recently proposed operating permit from the Indiana Department of Environmental Management.
- 2. Contrary to previous test reports, past AFOEHL sampling demonstrated the plant emissions aren't in compliance with particulate emission limits imposed by the Indiana Air Pollution Control Board rules. These stricter limits were specifically placed in the most recent draft operating permit from the state. We believe the plant can operate within the proposed limits, but testing in November 1990 is necessary to demonstrate our compliance. We have requested the state approve a delay in testing until 15 November 1990.

3. Our POC is Mr. Ruel Burns, 22225.

ROBERT J. BECK, Colonel, USAF Commander

cc: HQ SAC/DEVC 305 AREFW/JA 305 CSG/DEM APPENDIX B
Personnel Information

1. AFOEHL Test Team

Maj Ramon Cintron, Chief, Air Quality Function Capt Ronald Vaughn, Consultant, Environmental Quality Capt Linda Albrecht, Consultant, Environmental Quality Capt Robert O'Brien, Consultant, Environmental Quality Sgt Stanley Dabney, Bioenvironmental Engineering Technician

AFOEHL/EQ Brooks AFB TX 78235-5000

Phone: DSN 240-3305 Commercial (512) 536-3305

2. Grissom AFB on-site representatives

Lt Col David McCarthy 305 Strat Clinic/SG

Lt Ed Laferty 305 Strat Clinic/SGPB

DSN 928-3017

Commercial (317) 689-3017

David Hughes 305 CSG/DE

Marlene Seneca 305 CSG/DEEV

DSN 928-4592

Commercial (317) 689-4592

Smedley Graham 305 CES/DEMMHZ Jim Williams DSN 928-3253

Commercial (317) 689-3253

APPENDIX C
State Regulations

consistent with existing applicable state rules but no longer than twenty-four (24) consecutive hours.

326 IAC 2-4-3 Compliance determination; guidelines

- Sec. 3. (a) Compliance will be determined based on the emission limitations and conditions established in the permits issued in conjunction with the bubble. Compliance tests shall be performed in accordance with the test methods specified in individual rules under this title (326 IAC)
- (b) Records must be kept in accordance with sub-section (f) of this section and with 326 IAC 2-4-2(a)(9). These records must be kept for a period of the length of the permit unless the commissioner requires they be kept for a longer period of
- (c) The owner or operator of an emission source under a bubble shall make available copies of reports to the commissioner or its authorized representatives upon written request, at any reasonable time, which include but are not limited to, the nature, specific emission points, and total quantities of all emission.
- (d) The bubble shall not exempt any owner, operator from complying with any other applicable rule.
- (e) No owner or operator under the bubble is relieved the responsibility for achieving and maintaining a reduction of emissions as expeditiously as practicable, but no later than the compliance date required under the applicable regulation, unless the commissioner grants a later compliance date.
- (f) VOC emission sources subject to this rule (326 IAC 2-4) shall maintain records which include as a minimum all data and production information necessary to determine compliance of the process, equipment, or process line under the bubble. This shall include, but not be limited to the following
 - (1) type of VOC materials applied;
 - (2) VOC content of materials applied;
 - (3) amount of VOC material used; and
 - (4) estimated emission rates.

326 IAC 2-4-4 SIP revisions

- Sec 4. (a) The following types of bubbles shall be incorporated in the permits and submitted to U.S. EPA as SIP revisions
 - (1) Bubbles which do not have fixed

period over which they are limited must be emission limitations for the emission points within the bubble but will have single overall emission limit for each pollutant for the entire bubble.

- (2) Bubbles including fugitive emissions (defined in 326 IAC 2-2-1).
- (3) Bubbles which will include sources that are subject to a federal enforcement action. Federal enforcement action means an order issued under 42 USC, Section 7413(a), a civil action under 42 USC, Section 7413(c), a notice imposing noncompliance penalties under 42 USC, Section 7604.
- (4) Bubbles resulting in extension of compliance dates.
- (5) Bubbles not exempt from dispersion modeling under 326 IAC 2-4-2(a)(4)(A) and 326 IAC 2-4-2(a)(4)(B).

326 IAC 2-4-5 Public notice; comment procedure

Sec.5. All bubble submittals shall be subject to public notice and comment procedures as specified in 326 IAC 2-1-5(a)(1) and 326 IAC 2-1-5(a)(3). and in the Clean Air Act, 42 USC, Section 7410(a)(2)(H). All bubble proposals received by the state shall be submitted to the U.S. EPA for its comments. However, only the bubbles submitted to the U.S. EPA pursuant to 326 IAC 2-4-4 shall constitute SIP revisions. All bubbles approved by the commissioner will become effective after they are approved by U.S. EPA

326 IAC 2-4-6 Effect of future emission limitation requirements

Sec. 6. Should a new or more restrictive emission limitation, as required by the board, become applicable to any source included in a bubble under this rule (326 IAC 2-4) the source's permit shall be modified to demonstrate reductions in total bubble emissions equal to the reduction required by the new emission standards.

326 IAC 2-4-7 Enforceability

Sec. 7. All bubbles shall be enforced by the department and may be enforced by the U.S. EPA as part of the SIP.

ARTICLE 3. MONITORING REQUIREMENTS

Rule 1. Continuous Monitoring of **Emissions**

326 IAC 3-1-1 Applicability of rule

Sec. 1. (a) Sources in the following categories shall continuously monitor and record emissions of air pollutants in accordance with this rule (326 IAC 3-1).

- (1) Fossil fuel-fired steam generators of greater than two hundred fifty (250) million Btu per hour heat input capacity.
- (2) Nitric acid plants of greater than three hundred (300) tons per day production capacity, the production capacity being expressed at one hundred percent (100%) acid.
- (3) Sulfuric acid plants of greater than three hundred (300) tons per day production capacity, the production capacity being expressed at one hundred percent (100%) acid.
- (4) Petroleum refinery catalyst regenerators for fluid bed catalytic cracking units of greater than twenty thousand (20,000) barrels (eight hundred forty thousand (840,000) gallons) per day fresh feed capacity
- (b) Other monitoring requirements are contained in 326 IAC 2-1-3(h) and 326 IAC 7-1

326 IAC 3-1-2 Compliance date

Sec. 2. All sources must be in compliance with this rule (326 IAC 3-1) by July 1, 1978

326 IAC 3-1-3 Scope of rule

Sec. 3. This rule (326 IAC 3-1) sets. forth the minimum requirements for continuous emission monitoring and recording. These requirements include the source categories to be affected; emission monitoring, recording, and reporting requirements for those sources; performance specifications for accuracy, reliability, and durability to acceptable monitoring systems; and techniques to convert emission data to units of the applicable state emission standard. Such data must be reported to the commissioner as an indication of whether proper maintenance and operating procedures are being utilized by source operators to maintain emission levels at or below emission standards. Such data may be used directly or indirectly for compliance determination or any other purpose deemed appropriate by the commissioner.

326 IAC 3-1-4 Monitoring requirements for applicable pollutants

- Sec. 4. (a) The owner or operator of an emission source in a category listed in this rule (326 IAC 3-1) shall:
- (1) install, calibrate, operate, and maintain all monitoring equipment necessary for continuously monitoring the pollutants specified in this rule (326 IAC 3-1) for the applicable source category; and

- formance tests of such equipment and beginning of said occurrence. Information of gin monitoring and recording by July 1,
- (b) The source categories and the respective monitoring requirements are listed below
- (1) Fossil fuel-fired steam generators, as specified in 326 IAC 3-1-8(1), shall be monitored for opacity, nitrogen oxides emissions, sulfur dioxide emissions, and oxygen or carbon dioxide.
- (2) Fluid bed catalytic cracking unit catalyst regenerators, as specified in 326 IAC 3-1-8(4), shall be monitored for opacity.
- (3) Sulfuric acid plants, as specified in 326 IAC 3-1-8(3), shall be monitored for sulfur dioxide emissions.
- (4) Nitric acid plants, as specified in 326 IAC 3-1-8(2), shall be monitored for nitrogen oxides emissions.

326 IAC 3-1-5 Monitoring requirements; exemptions

- Sec. 5. Exemptions from the monitoring requirements of 326 IAC 3-1-4 shall be granted by the commissioner to any source which is
- (1) subject to new source performance standards promulgated in 40 CFR 60, the measurement of opacity which meets pursuant to Section 111 of the Clean Air Act: or
- (2) not subject to an applicable emission standard of the state implementation plan
- (3) scheduled for retirement by October 6, 1980, provided that adequate evidence and guarantees are provided that clearly show that the source will cease operations prior to such date.

326 IAC 3-1-6 Extensions of time

Sec. 6. Extensions of the time provided for installation of monitors may be granted by the board for facilities unable to meet the prescribed timeframe (compliance by July 1, 1978) provided the owner or operator of such facility demonstrates that good faith efforts have been made to obtain and install such devices within such prescribed timeframe

326 IAC 3-1-7 Monitoring system malfunction; report

Sec. 7. When a malfunction of any monitoring system lasts more than one (1) hour, the commissioner or the commissioner's appointed representative shall be notified by telephone, or telegraph, as soon as practicable but in no event later than four

(2) complete the installation and per- (4) daytime business hours after the bethe scope and expected duration of the malfunction shall be provided. A temporary exemption from the monitoring and reporting requirement of this rule (326 IAC 3-1) may be granted, provided that the owner or operator shows, to the satisfaction of the commissioner, that the malfunction was unavoidable and is being repaired as expeditiously as practicable.

326 IAC 3-1-8 Minimum monitoring requirements

Sec. 8. The sources listed in 326 IAC 3-1-4 shall, as a minimum, meet the following basic requirements:

- (1) Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual average capacity factor of greater than thirty percent (30%), as reported to the Federal Power Commission for calendar year 1974 or as otherwise demonstrated to the commissioner by the owner or operator, shall conform with the following monitoring requirements when such facility is subject to an emission standard of the SIP for the pollutant in question.
- (A) A continuous monitoring system for the performance specifications of 326 IAC 3-1-9(1)(A) of this rule shall be installed, calibrated, maintained, and operated in accordance with the procedures of this rule (326 IAC 3-1) by the owner or operator of any such steam generator of greater than two hundred fifty (250) million BTU per hour heat input except where:
- (i) gaseous fuel is the only fuel burned;
- (ii) oil or a mixture of gas and oil are the only fuels burned and the source is able to comply with 326 IAC 5-1 and 326 IAC 6-2 without utilization of particulate matter collection equipment, and where the source has never been found, through any administrative or judicial proceedings, to be in violation of 326 IAC 5-1.
- (B) a continuous monitoring system for the measurement of sulfur dioxide which meets the performance specifications of 326 IAC 3-1-9(1)(C) shall be installed, calibrated, maintained, and operated on any fossil fuel-fired steam generator of greater than two hundred fifty (250) million BTU per hour heat input which has installed sulfur dioxide pollutant control equipment.

- (C) A continuous monitoring system for the measurement of nitrogen oxides which meets the performance specifications of 326 IAC 3-1-9(1)(B) shall be installed. calibrated, maintained, and operated on fossil fuel-fired steam generators or greater than one thousand (1,000) million BTU per hour heat input when such facility is located in an air quality control region (AQCR) where the administrator of the U.S. EPA has specifically determined that a control strategy for nitrogen dioxide is necessary to attain the national standards. unless the source owner or operator demonstrates during source compliance tests as required by the commissioner that such a source emits nitrogen oxides at levels thirty percent (30%) or more below the emission standard set forth in 326 IAC 12.
- (D) A continuous monitoring system for the measurement of the percent oxygen or carbon dioxide which meets the performance specifications of Jac IAC 3-1-9(1)(D) or 326 IAC 3-1-9(1)(E) shall be installed, calibrated, operated, and maintained on all fossil fuel-fired steam generators where measurements of oxygen or carbon dioxide in the flue gas are required to convert either sulfur dioxide or nitrogen oxides continuous monitoring data, or both, to units of the emission standard in the SIP.
- (2) Each nitric acid plant of greater than three hundred (300) tons per day production capacity, the production capacity being expressed as one hundred percent (100%) acid, located in an AQCR where the administrator of the U.S. EPA has specifically determined that a control strategy for nitrogen dioxide is necessary to attain the national standard shall install, calibrate, maintain, and operate a continuous monitoring system for the measurements of nitrogen oxides which meets the performance specifications of 326 IAC 3-1-9(1)(B) for each nitric acid producing facility within such plant.
- (3) Each sulfuric acid plant of greater than three hundred (300) tons per day production capacity, the production capacity being expressed as one hundred percent (100%) acid, shall install, calibrate. maintain, and operate a continuous monitoring system for the measurement of sulfur dioxide which meets the performance specifications of 326 IAC 3-1-9(1)(C) for each sulfuric acid producing facility within such plant.

bed catalytic cracking units of greater than twenty thousand (20,000) barrels per day of fresh feed capacity shall install, calibrate, maintain, and operate a continuous monitoring system for the measurement of opacity which meets the performance specifications of 326 IAC 3-1-9(1)(A).

326 IAC 3-1-9 Minimum performance specifications; alternative procedures

- Sec. 9. Owners and operators of monitoring equipment installed to comply with this rule (326 IAC 3-1) except as provided in subdivision (2) of this section shall demonstrate compliance with the following performance specifications.
- (1) Performance specifications: The performance specifications set forth in 40 CFR 60, Appendix B, are incorporated herein by reference, and shall be used to determine acceptability of monitoring equipment installed pursuant to this rule (326 IAC 3-1) except that where reference is made to the "Administrator" in 40 CFR 60, Appendix B, the term "commissioner" should be inserted for the purpose of this rule (326 IAC 3-1). Performance specifications to be used with each type of monitoring system are listed below.
- (A) Continuous monitoring systems for measuring opacity shall comply with Performance Specification 1.
- (B) Continuous monitoring systems for measuring nitrogen oxides shall comply with Performance Specification 2.
- (C) Continuous monitoring systems for measuring sulfur dioxide shall comply with Performance Specification 2.
- (D) Continuous monitoring systems for measuring oxygen shall comply with Performance Specification 3.
- (E) Continuous monitoring systems for measuring carbon dioxide shall comply with Performance Specification 3.
- (2) Any source which has purchased an emission monitoring system(s) prior to September 11, 1974, may be granted an exemption by the commissioner from meeting such test procedures prescribed in 40 CFR 60, Appendix B, for a period not to extend past October 1, 1981.
- (3) For nitrogen oxides monitoring systems installed on fossil fuel-fired steam generators the pollutant gas used to prepare calibration gas mixtures (40 CFR 60, Section 2.1, Performance Specification 2, Appendix B) shall be nitrogen oxide

- (4) Each catalyst regenerator for fluid (NO). For nitrogen oxides monitoring systems installed in nitric acid plants the pollutant gas used to prepare calibration gas mixtures (40 CFR 60, Section 2.1, Performance Specification 2, Appendix B) shall be nitrogen dioxide (NO2). This gas shall also be used for daily checks under subdivision (7) of this section as applicable. For sulfur dioxide monitoring systems installed on fossil fuel-fired steam generators or sulfuric acid plants the pollutant gas used to prepare calibration gas mixtures (40 CFR 60, Section 2.1, Performance Specification 2, Appendix B) shall be sulfur dioxide (SO₂). Span and zero gases should be traceable to National Bureau of Standards reference gases whenever these reference gases are available. Every six (6) months from date of manufacture. span and zero (0) gases shall be reanalyzed by conducting triplicate analyses using the reference methods in 40 CFR 60. Appendix A, as follows: for sulfur dioxide. use Reference Method 6; for nitrogen oxide, use Reference Method 7; and for carbon dioxide or oxygen, use Reference Method 3. The gases may be analyzed at less frequent intervals if longer shelf lives are guaranteed by the manufacturer.
 - (4) Cycling times include the total time a monitoring system requires to sample, analyze, and record an emission measurement.
 - (A) Continuous monitoring systems for measuring opacity shall complete a minimum of one (1) cycle of operation sampling, analyzing, and data recording for each successive ten (10) second period.
 - (B) Continuous monitoring systems for measuring oxides of nitrogen, carbon dioxide, oxygen, or sulfur dioxide shall complete a minimum of one (1) cycle of operation (sampling, analyzing, and data recording) for each successive fifteen (15) minute period.
 - (5) All continuous monitoring systems or monitoring devices shall be installed such that representative measurements of emissions or process parameters (i.e., oxygen, or carbon dioxide) from the affected facility are obtained. Additional guidance for location of continuous monitoring systems to obtain representative samples are contained in the applicable 40 CFR 60. Performance Specifications of Appendix
 - (6) When the effluents from two (2) or more affected facilities of similar design

- and operating characteristics are combined before being released to the atmosphere, the commissioner may allow monitoring systems to be installed on the combined effluent, if the owner or operator shows that measurement of the combined effluents is at least as accurate as simultaneous measurement of each effluent prior to their combining in their common stack.
- (7) Owners or operators of all continuous monitoring systems installed in accordance with the requirements of this rule (326 IAC 3-1) shall record the zero (0) and span drift in accordance with the method prescribed by the manufacturer of such instruments; subject the instruments to the manufacturer's recommended zero (0) and span check at least once daily unless the manufacturer has recommended adjustments at shorter intervals, in which case such recommendations should be followed; adjust the zero (0) and span whenever the twenty-four (24) hour zero (0) drift or twenty-four (24) hour calibration drift limits of the applicable performance specifications in 40 CFR 60. Appendix B are exceeded; and adjust continuous monitoring systems referenced by subsection (2) of this section whenever the twenty-four (24) hour calibration drift exceeds ten percent (10%) of the emission standard.
- (8) Instrument span should be approximately two hundred percent (200%) of the expected instrument data display output corresponding to the emission standard for the source.
- (9) Alternative procedures and requirements:
- (A) Alternative locations for installing continuous monitoring systems or monitoring devices may be approved by the commissioner when the owner or operator can demonstrate that installation at alternative locations will enable accurate and representative measurements.
- (B) Alternative procedures for performing calibration checks may be approved by the commissioner when the owner or operator can demonstrate that such alternate procedures will still result in meeting the specifications set forth in tables 1.1 for opacity, 2.1 for sulfur dioxide and nitrogen oxides, and 3.1 for oxygen and carbon dioxide, as contained in 40 CFR 60, Appendix B.
 - (C) Alternative continuous monitoring

systems that do not meet the spectral response requirements in 40 CFR 60, Performance Specification 1, Appendix B, but adequately demonstrate a definite and consistent relationship between their measurements and the opacity measurement of a system complying with the requirements in Performance Specification 1 may be approved by the commissioner. The commissioner may require that such demonstration be performed for each affected facility.

326 IAC 3-1-10 Minimum data reporting requirements; retention of records

Sec. 10. (a) Owners or operators of facilities required to install continuous monitoring systems shall submit a written report of excess emissions for each calendar quarter and the nature and cause of the excess emissions, if known. The averaging periods used for data reporting shall be six (6) minutes for opacity and three (3) hours for gaseous measurements. The required report shall include, as a minimum, the data stipulated in this rule (326 IAC 3-1).

(A) When the owner or operator of a fossil fuelfired steam generator elects under 326 IAC 3-1-8(1) to measure oxygen in the flue gases, the measurements of the pollutant concentration and oxygen shall be on a dry basis and the following conversion procedure used:

$$E = CF \frac{(20.9)}{(20.9 - \% O_2)}$$

(B) When the owner or operator elects under 326 IAC 3-1-8(1) to measure carbon dioxide in the flue gases, the measurement of the pollutant concentration and the carbon dioxide concentration shall each be on a consistent basis (wet or dry) and the following conversion procedure used:

$$F = CF_c \frac{(100)}{(\% CO_2)}$$

(C) When the owner or operator elects under 326 IAC 3-1-8(1) to measure sulfur dioxide or nitrogen oxides in the flue gases, the measurement of the pollutant concentration and the sulfur dioxide and/or the nitrogen oxides concentration(s) shall each be on a wet basis and the following conversion procedure used except where wet scrubbers are employed or where moisture is otherwise added to the stack gases:

(b) For opacity measurements, the summary shall consist of the magnitude in actual percent opacity of all six (6) minute averages of opacity greater than forty percent (40%) opacity for each hour of operation of the facility. Average values may be obtained by integration over six (6) minutes or by arithmetically averaging a minimum of four (4) equally spaced, instantaneous, opacity measurements per minute.

(c) For gaseous measurements the summary shall consist of emission averages, in units of the applicable standard for each three (3) hour period during which the applicable standard was exceeded.

(d) The date and time identifying each period during which the continuous monitoring system was inoperative, except for zero (0) and span checks, and the nature of system repair of adjustments shall be reported. The commissioner may require proof of continuous monitoring system performance whenever system repairs of adjustments have been made.

(e) When no excess emissions have oc-

curred and the continuous monitoring system(s) has not been inoperative, repaired or adjusted, such information shall be included in the report.

(f) Owners or operators of affected facilities shall maintain a file of all information reported in the quarterly summaries, and all other data collected either by the continuous monitoring system or as necessary to convert monitoring data to the units of the applicable standard for a minimum of two (2) years from the date of collection of such data or submission of such summaries.

326 IAC 3-1-11 Reduction; conversion factors

Sec. 11. Owners or operators of affected facilities shall use the following procedures for converting monitoring data to units of the standard where necessary.

(1) For fossil fuel-fired steam generators the following procedures shall be used to convert gaseous emission monitoring data in parts per million (ppm) to pounds per million BTU where necessary.

$$E = C_{ws}F_{w} \frac{(20.9)}{(20.9(1-B_{wa})-\%O_{2ws})}$$

(D) When the owner or operator elects under 325 IAC 3-1-8(1) to measure sulfur dioxide or nitrogen oxides in the flue gases, the measurement of the pollutant concentration and the sulfur dioxide and/or the nitrogen oxides concentration(s) shall each be on a wet basis and the following conversion procedure used where wet scrubbers or moisture is otherwise present in the stack gases, provided water vapor content of the stack gas is measured at least once every fifteen (15) minutes at the same point as the pollutant and oxygen measurements are made:

$$E = C_{ws}F$$
 (20.9)
(20.9(1-B_{ws})-%O_{2ws})

(E) The values used in the equations under this section are derived as follows:

 $C_{\rm ws}$ = pollutant concentration at stack conditions, g/wscm (grams/wet standard cubic meter), lb/wscm (pounds/wet standard cubic meter), determined by multiplying the average concentration (ppm) for each one (1) hour period by 4.15 x 10-5 Mg/wscm per ppm (2.59 x 10-9 M

lb/wscm per ppm) where M is pollutant molecular weight, g/g-mole (lb/lb-mole).

M = 64.07 for sulfur dioxide and 46.01 for nitrogen oxides.

C = as above but measured in terms of pounds/ dry standard cubic meter (lb/dscm) or grams/ dry standard cubic meter (g/dscm).

 $F_{c} = a$ factor representing a ratio of the volume of dry flue gases generated to the calorific value of the fuel combusted (F), and a factor representing a ratio of the volume of carbon dioxide generated to the calorific value of the fuel combusted (Fc), respectively. Values of F and Fc are given in 40 CFR 60, Section 60.45(f), as applicable.

 $F_w = a$ factor representing a ratio of the volume of wet flue gases generated to the calorific value of the fuel combusted. Values of F_w are:

- (i) For anthracite coal as classified according to A.S.T.M. D388-66, $F_w = 1.188$ wscm/million
- (2) For sulfuric acid plants the owner or operator shall:
- (A) establish a conversion factor three (3) times daily according to the procedures of 40 CFR 60, Section 60.84(b);
- (B) multiply the conversion factor by the average sulfur dioxide concentration in the flue gases to obtain average sulfur dioxide emissions in lb/ton; and
- (C) report the average sulfur dioxide emission for each three (3) hour period in excess of the emission standard set forth in 326 IAC 7-1, in the quarterly summary.
- (3) For nitric acid plants the owner or operator shall:
- (A) establish a conversion factor according to the procedures of 40 CFR 60, Section 60.73(b);
- (B) multiply the conversion factor by the average nitrogen oxides concentration in the flue gases to obtain nitrogen oxides emissions in lb/ton:
- (C) report the average nitrogen oxides for each averaging period in excess of the emission standard set forth in 326 IAC 12, in the quarterly summary.
- tion procedures:

calories (10580 wscf/million BTU).

- (ii) For sub-bituminous and bituminous coal as classified according to A.S.T.M. D388-66, $F_w = 1.200 \text{ wscm/million calories } (10680 \text{ wscf/})$ million BTU).
- (iii) For liquid fossil fuels including crude, residual, and distillate oils, $F_w = 1.164 \text{ wscm/}$ million calories (10360 wscf/million BTU).
- (iv) For gaseous fossil fuels: for natural gas, $F_w = 1.196 \text{ wscm/million calories } (10650) \text{ wscf/}$ million BTU; for propane, $F_w = 1.150$ wscm million calories (10240 wscf/million BTU); for butane, F_w = 1.172 wscm/million caleries (10430 wscf/million BTU).

Bwa = proportion by volume of water vapor in the ambient air.

B_{ws} = proportion by volume of water vapor in the stack gas.

 $\%0_2$, $\%CO_2$ = Oxygen or carbon dioxide volume (expressed as percent) determined with equipment specified under 326 IAC 3-1-8.

E = pollutant emission, lb/million BTU.

- emission averages that do not require integration of data may be approved by the commissioner if the owner or operator shows that his procedures are at least as accurate as those in this rule (326 IAC 3-1)
- (B) Alternative methods of converting pollutant concentration measurements to units of the emission standard may be approved by the commissioner if the owner or operator shows that his procedures are at least as accurate as those in this rule (326 IAC 3-2).

Rule 2. Source Sampling Procedures

326 IAC 3-2-1 Applicability

Sec. 1. This rule (326 IAC 3-2) applies to any emissions testing performed in the state to determine compliance with applicable emission limits contained in this title (326 IAC), or for any other purpose requiring review and approval by the commissioner.

326 IAC 3-2-2 Federal test procedures: adoption

Sec. 2. Emissions tests subject to this (4) Alternate data reporting and reduc- rule (326 IAC 3-2) shall be conducted in accordance with the procedures and analy-

(A) Alternate procedures for computing sis methods specified in 40 CFR 60. Appendix A and 40 CFR 61, Appendix B. Such test methods, equipment, calibration requirements, and analysis must be strictly followed unless otherwise approved by the commissioner.

326 IAC 3-2-3 Privately conducted protocol tests; prior approval, form

- Sec. 3. (a) When a test is to be performed by any person other than staff, a test protocol form shall be completed and received by the commissioner no later than thirty-five (35) days prior to the intended test date. Such test protocol shall be on a form approved by the commissioner. Any special or unique information relative to the scheduled test shall be included with the form.
- (b) After evaluating the completed test protocol form, the commissioner may:
 - (1) Inspect the test site.
- (2) Require additional conditions, including, but not limited to the following:
- (A) Reasonable modifications to the stack or duct to obtain acceptable test conditions.
- (B) A pretest meeting to resolve an acceptable test protocol,

conditions such as interferences, nonsteady or cyclic processes.

(D) The keeping of process operating parameter records, operating logs or

charts during the test.

(E) Conditions on control equipment operation to make it representative of future normal operation, or

- (F) The recording of specified control equipment operating parameters during the test.
- (c) If the commissioner requires modifications to the test methods, analytical methods, operational parameters or other matters included in the test protocol, or if a pretest meeting is required, the source operator and the testing firm shall be notified by letter or telephone at least twenty-five (25) days prior to the proposed test date. The source operator will receive notice of the acceptability of the test protocol from the commissioner within ten (10) days of its receipt. If the source operator or test firm desires to change any previously submitted procedures or conditions, the commissioner must be notified of such change at least twenty-five (25) days prior to intended test date, and such changes cannot be made unless approved the commissioner in the form of a test by the commissioner prior to the test. Changes in the test protocol that result from emergency conditions must be approved by an authorized on-site staff member.
- (d) The commissioner reserves the right to conduct any portion of the reference method tests. In such case, a twenty-five (25) day notice of proper test procedures will be given to the company and their testing representative.
- (e) The source operator must notify the commissioner of the actual test date at least two (2) weeks prior to the date.

326 IAC 3-2-4 Required testing conditions; calibration of instruments

- Sec. 4. (a) Staff may observe the field test procedures and plant operation during the test
- (b) All tests shall be conducted while the source is operating at between ninetyfive (95%) to one hundred percent (100%) of its maximum operating capacity, or under other capacities or conditions specified and approved by the commissioner. For the purpose of this rule (326 IAC 3-2), maximum operating capacity means the maximum design capacity of the

(C) Additional tests to allow for adverse source or other maximum operating ca- ating conditions during tests: pacities agreed to by the source and the commissioner

- (c) Sources subject to 376 IAC 12. New Source Performance Standards, shall be tested under conditions as specified in the applicable provision therein.
- (d) Calibration results of the various sampling components must be available used; for examination at the test site. The information must include dates, methods used. data and results. All components requiring calibration must be calibrated within sixty (60) days prior to the actual test date. Post test calibrations must be performed on the components within forty-five (45) days after the actual test date or before the equipments' next field use, whichever comes first. Components requiring calibration are listed in the federal test methods specified in 326 IAC 3-2-2. Calibration need not be done between tests when several facilities at one (1) location are tested in series, as long as the units are calibrated prior to the first test and after the last test in the series which is conducted at that site.

326 IAC 3-2-5 Test results; reports

Sec. 5. (a) All tests shall be reported to report containing the following information (which can be kept confidential upon official; request):

- (1) Certification by team leader and reviewer.
 - (2) Introduction, containing:
- (A) date and type of tests;
- (B) type of process and control equipment:
 - (C) plant name and location;
 - (D) purpose of test; and
 - (E) test participants and titles.
 - (3) Results summary, containing:
- (A) tabulated data and results of each test run, process weight rate or heat input rate, the stack gas flow rate, the measured emissions given in units consistent with the applicable emission limits, and the visible emissions or average opacity readings; and
 - (B) allowable emission rate.
 - (4) Process information, including:
- (A) description of process and control device:
 - (B) process flow diagram;
 - (C) maximum design capacities;
- (D) fuel analysis and heat value for heat input rate determination:
 - (E) process and control equipment oper-

- (F) discussion of variations from normal plant operations; and
- (G) stack height, exit diameter, volumetric flow rate (acfm), exit temperature, and exit velocity.
 - (5) Sampling information, including:
- (A) description of sampling methods
- (B) brief discussion of the analytical procedures with justification for any variance from standard procedures;
- (C) specification of the number of sampling points, time per point, and total sampling time per run;
- (D) cross sectional diagram showing sampling points, diagram showing stack dimensions, sampling location and distance from the nearest flow disturbance upstream and downstream of the sampling points; and
 - (E) sampling train diagram.
 - (6) Appendix, containing:
 - (A) sampling and analytical procedures;
- (B) results and calculations: One (1) complete calculation using actual data for each type of test performed must be shown. Results must be stated in units consistent with the applicable emission limitation;
- (C) raw production data signed by plant
- (D) photocopies of all actual field data or original raw field data;
- (E) laboratory report with chain of custody shown;
- (F) copies of all calibration data:
- (G) applicable regulations showing emission limitation: and
- (H) copies of visible emissions observations or opacity monitor readings (for TSP tests).
- (b) Unless previously agreed to in writing by the commissioner, all test reports must be received by the commissioner within forty-five (45) days of the completion of the testing.
- 326 IAC 3-2-6 Special testing procedures; particulate matter; sulfur dioxide; nitrogen oxide; volatile organic chemicals
- Sec. 6. (a) Particulate matter tests shall be conducted in accordance with the following procedures:
- (1) 40 CFR 60, Appendix A, Method 5. as in effect on December 2, 1981, or other procedures approved by the commissioner shall be used.
 - (2) Visible emissions (VE) evaluation

shall be performed in conjunction with a particulate emissions test by a qualified observer in accordance with the procedures contained in 326 IAC 5-1-4. VE readings shall be continuously recorded for at least thirty (30) minutes per hour of sampling time for each sampling repetition. A variance from this requirement may be granted by the on-site staff person for one (1) repetition only and provided that adverse conditions exist which would invalidate the VE readings. Sources equipped with continuous opacity monitors may submit the monitor's instantaneous or six (6) minute integrated readings during the sampling period, in lieu of performing VE observations, provided,

- (A) The monitoring system meets the Performance Specifications Tests I as specified in 40 CFR 60, Appendix B as in effect on December 2, 1981, and
- (B) The monitor readings submitted with the test include a zero (0) and span calibration check at the start and end of each test.
- (3) At least three (3) repetitions of the test must be performed under identical source operating conditions unless otherwise allowed by the commissioner.
- (4) During each of the repetitions, each sampling point shall be sampled for a minimum of two (2) minutes.
- (5) The total test time per repetition shall be no less than sixty (60) minutes.
- (6) The total sample volume per repetition shall be no less than thirty (30) dry standard cubic feed (dscf)
- (7) The total particulate weight collected from the sampling nozzle, probe, cyclone (if used), filter holder (front half), filter and connecting glassware shall be reported. Particulate analysis of the impinger catch is not required unless specified by commissioner.
- conducted in accordance with the following procedures:
- (1) 40 CFR 60, Appendix A, Method 6 or 40 CFR 60, Appendix A, Method 8, as in effect on December 2, 1981, or other procedures approved by the commissioner, shall be used
- (2) At least three (3) repetitions of two (2) samples, each of 40 CFR 60, Appendix A. Method 6, or three (3) repetitions of 40 CFR 60, Appendix A, Method 8, performed under identical source operating conditions, shall constitute a test.

- (3) During each of the repetitions for 40 CFR 60, Appendix A, Method 8, each sampling point shall be sampled for a minimum of two (2) minutes.
- (4) The total test time per repetition shall be as follows:
- (A) 40 CFR 60, Appendix A, Method 6: a minimum of twenty (20) minutes per run with a thirty (30) minute interval between each run; or
- (B) 40 CFR 60, Appendix A, Method 8: a minimum of sixty (60) minutes per run.
- (5) The total sample volume per repetition under 40 CFR 60, Appendix A, Method 8, shall be no less than forty (40) dry standard cubic feet (dscf).
- (c) Nitrogen oxide tests shall be conducted in accordance with the following procedures:
- (1) 40 CFR 60, Appendix A, Method 7, as in effect on December 2, 1981, or other procedures approved by the commissioner, shall be used.
- (2) At least three (3) repetitions of four (4) samples each shall constitute a test.
- (d) Volatile organic compounds (VOC) emissions tests shall be conducted in accordance with the following procedures:
- (1) 40 CFR 60, Appendix A, Method 25, as in effect on December 2, 1981, or other procedures approved by the commissioner, shall be used for the total nonmethane organic (TNMO) emissions.
- (2) At least three (3) duplicate samples must be collected and analyzed.
- (3) The total test time per repetition shall be a minimum of sixty (60) minutes. 326 IAC 3-2-7 Invalidity of nonconforming tests
- Sec. 7. Any tests not meeting the requirements of this rule (326 IAC 3-2) are invalid for purposes of this rule.

326 IAC 3-2-8 Appeals

Sec. 8. A determination by the commis-(b) Sulfur dioxide (SO₂) tests shall be sioner may be appealed in accordance with IC 13-1-1-4(f) and IC 4-21.5.

ARTICLE 4. BURNING REGULATIONS

Rule 1. Open Burning

326 IAC 4-1-1 Scope of rule

Sec. 1. The requirements of this rule (326 IAC 4-1) establish standards for the open burning of material which would result in emissions of regulated pollutants. This rule (326 IAC 4-1) applies everywhere in the state, except in areas where acts permitted by 326 IAC 4-1-3 or authorized by variance pursuant to 326 IAC 4-1-4 are prohibited by other state or local laws, regulations, or ordinances.

326 IAC 4-1-2 Prohibition against open burning

Sec. 2. No persons shall open burn any material except as provided in 326 IAC 4-1-3 or 326 IAC 4-1-4, or 326 IAC 4-1-5.

326 IAC 4-1-3 Exemptions

Sec. 3. (a) The following types of fires are permitted:

- (1) Fires celebrating Twelfth Night Ceremonies.
 - (2) Fires celebrating school pep rallies.
- (3) Fires celebrating scouting activities. (4) Fires used for recreational and cooking purposes, i.e., camp fires.
- (5) Residential burning; where residence contains four or fewer units. Burning shall be in a noncombustible container sufficiently vented to induce adequate primary combustion air with enclosed sides, a bottom, and a mesh covering with openings no larger than one-fourth inch (1/4") square. Burning is prohibited in apartment complexes and mobile home parks
- (6) Farm burning: wood products derived from the following farm maintenance operations:
- (A) Burning of fence rows and fields or materials derived therefrom.
- (B) Burning of natural growth derived from clearing a drainage ditch.
- (C) Burning of limbs and prunings, but only if so diseased or infected as to present a contamination problem.
- (7) Waste oil burning: where the waste oil has been collected in a properly constructed and located pit as prescribed in 310 IAC 7-1-37(A) of the Division of Oil and Gas, Department of Natural Resources. Each oil pit may be burned once every two (2) months and all the oil must be completely burned within thirty (30) minutes after ignition.
- (8) Department of natural resources burning: in order to facilitate "prescribed" burning on DNR controlled properties for wildlife habitat maintenance, forestry purposes, and natural area management.
- (9) United States Department of the Interior burning: in order to facilitate a National Park Service Fire Management Plan for the Indiana Dunes National Lakeshore.
 - (b) All exemptions under subsection (a)

- following:
- (1) Only wood products shall be burned unless otherwise stated above.

(2) Fires shall be attended at all times until completely extinguished.

(3) If fires create an nuisance or a fire hazard, they shall be extinguished.

- (4) All residential, farm and waste oil burning shall occur during daylight hours chambers or the equivalent. during which the fires may be replenished, but only in such a manner that nearly all of the burning material is consumed by sunset.
- (5) No burning shall be conducted during unfavorable meteorological conditions by the manufacturer and approved by the such as temperature inversions, high winds, air stagnation, etc.

326 IAC 4-1-4 Variances

- Sec. 4. (a) Burning with prior approval of the commissioner or the commissioner's designated agent may be authorized for designated agent. the following:
- (1) Emergency burning of spilled petroleum products when all reasonable efforts to recover the spilled material have been made and failure to burn would result in an imminent fire hazard or water pollution problem.
- (2) Burning of refuse consisting of material resulting from a natural disaster.
- (3) Burning for the purpose of fire
- (4) Burning of natural growth derived from a clearing operation, i.e., removal of natural growth for change in use of the land
- (5) Burning of highly explosive or other dangerous materials for which no alternative disposal method exists or where transportation of such materials is impossible
- (b) Burning not exempted by 326 IAC 4-1-3 may be permitted with prior receipt of a variance application and approval of the commissioner or the commissioner's designated agent.

326 IAC 4-1-5 Liability for fire

Sec. 5. Any person who allows the accumulation or existence of combustible material which constitutes or contributes to a fire causing air pollution may not refute liability for violation of this rule (326 IAC 4-1) on the basis that said fire was set by vandals, accidental, or an act of God.

Rule 2. Incinerators

326 IAC 4-2-1 Applicability of rule

Sec. 1. This rule (326 IAC 4-2) establishes standards for the use of incinerators

of this section shall be subject to the which emit regulated pollutants. This rule (326 IAC 4-2) does not apply to incinerators in residential units consisting of four (4) or fewer families. All other incinerators are subject to this rule (326 IAC 4-2).

326 IAC 4-2-2 Stationary incinerators

Sec. 2. All stationary incinerators shall:

- (1) Consist of primary and secondary
- (2) Be equipped with a primary burner unless burning wood products.
- (3) Comply with 326 IAC 5-1 and 326 IAC 2.
- (4) Be maintained properly as specified commissioner or the commissioner's designated agent.
- (5) Be operated according to the manufacturer's recommendations and only burn waste approved by the commissioner or its
- (6) Comply with other state and/or local rules or ordinances regarding installation and operation.
- (7) Be operated so that emissions of hazardous material including, but not limited to, viable pathogenic bacteria, dangerous chemicals or gases, or noxious odors are prevented.
- (8) Not emit particulate matter in excess of the following:
- (A) Incinerators with a maximum refuse-burning capacity of two hundred (200) or more pounds per hour: 0.3 pounds of particulate matter per one thousand (1,000) pounds of dry exhaust gas at standard conditions corrected to fifty percent (50%) excess air.
- (B) All other incinerators: 0.5 pounds of particulate matter per one thousand (1.000) pounds of dry exhaust gas at standard conditions corrected to fifty percent (50%) excess air.
- (9) Not create a nuisance or a fire hazard. If any of the above result, the burning shall be terminated immediately.

326 IAC 4-2-3 Portable incinerators

- Sec. 3. All portable incinerators shall be subject to the following conditions:
- (1) Approval of the commissioner or its designated agent must be obtained prior to operation at a new project site.
- (2) Only wood products shall be burned. (3) Merchantable material may be salvaged where practicable.
- (4) The local health department shall be notified prior to any burning.

- (5) All burning shall be conducted under favorable meteorological conditions.
- (6) Burning shall occur during daylight hours and all material shall be consumed by sunset.
- (7) If burning creates an air pollution problem, a nuisance or a fire hazard, the burning shall be terminated immediately.
- (8) The incinerator shall be maintained and operated according to the manufacturer's recommendations and in a manner approved by the commissioner or its designated agent.
- (9) The installation and operation of such an apparatus shall comply with all other state and/or local rules or ordinances.
- (10) A portable incinerator shall comply with both 326 IAC 5-1 and 326 IAC

ARTICLE 5. OPACITY REGULATIONS

Rule 1. Opacity Limitations

326 IAC 5-1-1 Applicability of rule

Sec. 1. (a) This rule (326 IAC 5-1) shall apply to all visible emissions (not including condensed water vapor) emitted by or from any facility or source except those sources or facilities for which specific visible emission limitations are established by 326 IAC 11, 326 IAC 12, or 326

- (1) The requirements of 326 IAC 5-1-2(a)(1) shall apply to sources or facilities located in attainment areas for particulate matter, designated in 326 IAC
- (2) The requirements of 326 IAC 5-1-2(a)(2) shall apply to sources or facilities located in nonattainment areas for particulate matter as designated in 326 IAC 1-4.

326 IAC 5-1-2 Visible emission limitations

- Sec. 2. (a) Visible emissions from any source or facility shall not exceed any of the following limitations. Unless otherwise stated, all visible emissions shall be observed in accordance with the procedures set forth in 326 IAC 5-1-4:
- (1) Sources or facilities of visible emissions located in attainment areas for particulate matter shall meet the following limitations:
- (A) Visible emissions shall not exceed. an average of forty percent (40%) opacity in twenty-four (24) consecutive readings.

- (B) Visible emissions shall not exceed sixty percent (60%) opacity for more than a cumulative total of fifteen (15) minutes (sixty (60) readings) in a six (6) hour period.
- (2) Sources or facilities of visible emissions located in nonattainment areas shall meet the following limitations:
- (A) Visible emissions shall not exceed, an average of thirty percent (30%) opacity in twenty-four (24) readings.
- (B) Visible emissions shall not exceed sixty percent (60%) opacity for more than a cumulative total of fifteen (15) minutes (sixty (60) readings) in a six (6) hour period.
- (3) Sources and facilities of visible emissions located in both attainment or nonattainment areas, for which an alternate visible emission limitation has been established pursuant to 326 IAC 5-1-5(b), shall comply with said limitations in lieu of the limitations set forth in subsection (a)(1) and (a)(2) of this section.

326 IAC 5-1-3 Temporary exemptions

- Sec. 3. (a) Boiler startup and shutdown: When building a new fire in a boiler, or shutting down a boiler, visible emissions may exceed the applicable opacity limit established in 326 IAC 5-1-2(a); however, visible emissions shall not exceed an average of sixty percent (60%) opacity and emissions in excess of the applicable opacity limit shall not continue for more than ten (10) continuous minutes on one (1) occasion in any twenty-four (24) hour period.
- (b) Cleaning boilers: When removing ashes from the fuel bed or furnace in a boiler or blowing tubes, visible emissions may exceed the applicable opacity limit established in 326 IAC 5-1-2(a) however, visible emissions shall not exceed sixty percent (60%) opacity and visible emissions in excess of the applicable opacity limit shall not continue for more than five (5) continuous minutes on one (1) occasion in any sixty (60) minute period. Such emissions shall not be permitted on more than three (3) occasions in any twelve (12) hour period.
- (c) Facilities not temporarily exempted by subsections (a) and (b) of this section may be granted special temporary exemptions by the commissioner of the same duration and type authorized therein provided that the facility proves to the satisfaction of the commissioner that said ex-

emptions are needed and that during periods of startup and shutdown, owners and operators shall, to the extent practicable, maintain and operate any affected facility including air pollution control equipment in a manner consistent with good air pollution control practice for minimizing emissions. Determination of whether acceptable operating and maintenance procedures are being used will be based on information available to the commissioner, which may include, but is not limited to, monitoring results, opacity observations, review of operating and maintenance procedures and inspection of the source.

(d) Sources or facilities not exempted through subsections (a), (b), or (c) of this section may also be granted special exemptions by the commissioner, provided that the source or facility owner or operator proves to the satisfaction of the commissioner that said exemption is justifiable. Said exemption(s) may be of longer duration and may apply to other types of facilities not provided for in subsections (a) or (b) of this section.

326 IAC 5-1-4 Compliance determination

Sec. 4. (a) Determination of visible emissions from sources or facilities to which this rule (326 IAC 5-1) applies may be made in accordance with subdivisions (1) or (2) below:

(1) Determination of visible emissions by means of a qualified observer shall be made according to the following:

(A) Position: The qualified observer shall stand at a distance sufficient to provide a clear view of the emissions with the sun, if visible, oriented in the 140° sector to his back. Consistent with maintaining the above requirement, the observer shall, as much as possible, make his observations from a position such that his line of vision is approximately perpendicular to the direction of the visible emissions (plume where applicable), and when observing opacity of emissions from rectangular outlets (e.g., monitors, open baghouses, noncircular stacks), approximately perpendicular to the longer axis of the outlet. The observer's line of sight should not include more than one (1) plume at a time when multiple stacks are involved, and in any case the observer should make his observations with his line of sight perpendicular to the longer axis of such a set of

multiple stacks (e.g., stub stacks on baghouses).

- (B) Field records: The observer shall record the name of the plant, emission location, type of facility, observer's name and affiliation, and the date on a field data sheet. Time, estimated distance to the emission location, approximate wind direction, estimated wind speed, description of the sky conditions (presence and color of clouds), and visible emissions (plume where applicable) background are recorded on a field data sheet at the time opacity readings are initiated and completed.
- (C) Observations: Opacity observations shall be made at the point of greatest opacity in that portion of the visible emissions, (plume where applicable) where condensed water vapor is not present. The observer shall not look continuously at the visible emissions, (plume where applicable) but instead shall observe the visible emissions, (plume where applicable) momentarily at fifteen (15) second intervals.
- (D) Recording observations: Opacity observations shall be recorded to the nearest five percent (5%) at fifteen (15) second intervals on an observational record sheet. A minimum of twenty-four (24) observations shall be recorded. Each momentary observation shall be deemed to represent the average opacity of emissions for a fifteen (15) second period.
- (E) Determination of opacity as an average of twenty-four (24) consecutive observations: Opacity shall be determined as an average of twenty-four (24) consecutive observations recorded at fifteen (15) second intervals. Divide the observations recorded on the record sheet into sets of twenty-four (24) consecutive observations. A set is composed of any twenty-four (24) consecutive observations. Sets need not be consecutive in time and in no case shall two (2) sets overlap. For each set of twenty-four (24) observations, calculate the average by summing the opacity of the twenty-four (24) observations and dividing this sum by twenty-four (24). Record the average opacity on a record sheet. For the purpose of determining an alternative visible emission limit in accordance with 326 IAC 5-1-5(b) following, an average of twenty-four (24) consecutive readings or more may be used to calculate the alternate visible emissions limit.
 - (F) Determination of opacity as a cu-

mulative total of fifteen (15) minutes: For be in compliance with the allowable mass emissions from intermittent sources, opacity shall be determined in accordance with clause (A), (B), (C), and the first sentence of (D). Each momentary observation shall be deemed to represent the average opacity of emissions for a fifteen (15) second period. All readings greater than the specified limit in 326 IAC 5-1-2 shall be accumulated as fifteen (15) second segments for comparison with the limit.

- (G) Attached steam plumes: When condensed water vapor is present within the plume as it emerges from the emission outlet, opacity observations shall be made beyond the point in the plume at which condensed water vapor is no longer visible. The observer shall record the approximate distance from the emission outlet to the ing provisions. Additionally, if the point in the plume at which the observations are made.
- (H) Detached steam plumes: When water vapor in the plume condenses and becomes visible at a distinct distance from the emission outlet, the opacity of emissions should be evaluated at the emission outlet prior to the condensation of water vapor and the formation of the steam plume
- (2) Determination of compliance with visible emission limitations established in this rule (326 IAC 5-1) may also be made in accordance with a source's or facility's continuous monitoring equipment, for any source or facility in compliance with the requirements of 326 IAC 3-1.
- (b) If the compliance determination procedures set forth in subsections (a)(1) and (a)(2) of this section results in any conflict in visible emission readings, the determination made in accordance with subsection (a)(2) of this section shall prevail for the purpose of compliance, provided that it can be shown that the continuous monitor has met the performance specifications as set forth in the 40 CFR 60. specifically Performance Specification

326 IAC 5-1-5 Violations

Sec. 5. (a) A violation of this rule (326 IAC 5-1) shall constitute prima facie evidence of a violation of other applicable particulate emission control regulations. A violation of any such rule may be refuted by a performance test conducted in accordance with subsection (b) of this section. Such test shall refute the mass emission violation only if the source is shown to

emission limit. An exceedance of the allowable opacity emission limit will not be treated as a violation if, during the test described in subsection (b) of this section, the source demonstrates compliance with the allowable mass emission limit while simultaneously having visible emissions more than or equal to the reading at which the exceedance was originally observed.

- (b) The owner or operator of a source or facility which believes it can operate in compliance with the applicable mass emission limitation, but exceeds the limits specified in 326 IAC 5-1-2, may submit a written petition to the commissioner requesting that an alternate opacity limitation be established pursuant to the followcommissioner has issued a notice of violation to an owner or operator of a source or facility for violation of the applicable opacity limitation, such owner or operator may, propose in notice of violation resolution, to disprove said violation by establishing an alternate opacity limit pursuant to the following provisions. This alternate limit shall be based upon a mass emission performance test conducted according to a method designated by the commissioner. and a visible emission test conducted simultaneously, according to 326 IAC 5-1-4. Where the commissioner determines there is no acceptable test method available, a request for an alternate visible emission limit shall be denied.
- (1) The alternate emission limit shall be equal to that level of opacity at which the source or facility will be able, as indicated by the performance and opacity tests, to meet the opacity standard at all times during which the source or facility is meeting the mass emission limitation. However, the commissioner shall also reserve the right to determine the alternate visible emissions limit in the following manner:
- (A) If a performance test of a source or facility demonstrates:
- (i) that said source or facility is in compliance with the allowable mass emissions limit (as defined in 326 IAC 1-2) at the time that the test is done; and
- (ii) simultaneously, said source's or facility's test demonstrates that the allowable opacity emission limit is being exceedthen, the enforceable opacity limitation shall be equal to that level of opacity at which the source or facility will

be able as indicated by the performance and opacity tests to meet the opacity standard at all times during which the source or facility is meeting the mass emission limitation.

(B) If a performance test of a source or facility demonstrates:

(i) that said source or facility is in compliance with the allowable mass emission limit, and the test mass emission rate is within ten percent (10%) of the allowable emissions limit for that source or facility: and

- (ii) simultaneously, said source's or facility's test demonstrates that the opacity observed is below the allowable opacity emission limit, the enforceable opacity limitation shall be equal to that level of onacity at which the source or facility will be able, as indicated by the performance and opacity tests, to meet the opacity standard at all times during which the source or facility is meeting the mass emission limitation.
- (C) If a performance test of a source or facility demonstrates:
- (i) that said source or facility is in compliance with the allowable mass emission limit, and the test mass emission rate is less than ninety percent (90%) of the allowable emissions limit; and
- (ii) simultaneously, said source's or facility's test demonstrates that the opacity observed is below the allowable opacity emission limit, the enforceable opacity limitation shall remain the existing allowable opacity emission limitation for that source or facility.
- (2) Compliance with 326 IAC 6-1, 326 IAC 6-2, 326 IAC 6-3, and 326 IAC 11-1, and other applicable rules must be demonstrated by the performance test.
- (3) The commissioner may require a performance test in any case where it is necessary to determine the compliance status for a facility. However, the commissioner will not request a performance test for any facility which is known to be in compliance with the allowable opacity limitation.
- (4) All alternate visible emission limits shall be established on a source or facilityspecific basis. No limitation for any facility or source shall be established by reference to a similar or identical facility or source
- (5) The owner or operator of the source or facility shall notify the commissioner at

least fifteen (15) days prior to conducting ations; modification by commissioner a test for the purposes of demonstrating an alternate visible emission limit.

- (6) A staff member who is a qualified observer, approved by the commissioner or other consultant approved by the commissioner shall be present during any performance tests.
- (7) The cost of the performance test shall be at the expense of the owner or operator.
- (8) Any alternate visible emission limit established for any source or facility shall not become effective until said limitation is established in the applicable operating permit. Said limitation will be incorporated, by amendment, into the operating permit for said source or facility and submitted to the U.S. EPA as a SIP revision.
- (9) Where a visible emission limitation is based upon a new source performance standard, any new limitation must comply with the provisions of said standard.

326 IAC 5-1-6 Compliance schedule

Sec. 6. Sources newly subject to more stringent limitations on August 27, 1980, by 326 IAC 5-1-2 shall comply with the compliance schedule of 326 IAC 6-1.

326 IAC 5-1-7 State implementation plan revisions

Sec. 7. Any exemptions given or provisions granted to this rule (326 IAC 5-1) by the commissioner under 326 IAC 5-1-3(c), 326 IAC 5-1-3(d), or 326 IAC 5-1-5(b), shall be submitted to the U.S. EPA as a SIP revision

ARTICLE 6. PARTICULATE RULES

Rule 1. Nonattainment Area Limitations

326 IAC 6-1-1 Applicability of rule

Sec. 1. Sources or facilities specifically listed in 326 IAC 6-1-7 shall comply with the limitations contained therein. Sources or facilities that are (1) located in the nonattainment counties listed in 326 IAC 6-1-7. (2) but which sources or facilities are not specifically listed in 326 IAC 6-1-7. and (3) have the potential to emit one hundred (100) tons or more of particulate matter per year or have actual emissions of ten (10) tons or more of particulate matter per year, shall comply with the limitations of 326 IAC 6-1-2.

326 IAC 6-1-2 Particulate emission limitations; fuel combustion steam generators, asphalt concrete plant, grain elevators, foundaries, mineral aggregate oper-

Sec. 2. (a) General sources: Facilities not limited by subsections (b) through (g) of this section shall not allow or permit discharge to the atmosphere of any gases which contain particulate matter in excess of 0.07 gram per dry standard cubic meter (g/dscm) (0.03 grain per dry standard cubic foot (dscf)). Where this limitation is more stringent than the applicable limitations of subsections (b) through (g) of this section, for facilities in existence prior to the applicability dates, or of a size not applicable to said subsections, emission limitations for those facilities shall be determined by the commissioner and will be established in accordance with the procedures set forth in subsection (h) of this

(b) Fuel combustion steam generators: No person shall operate a fossil fuel combustion steam generator (any furnace or boiler used in the process of burning solid. liquid, or gaseous fuel or any combination thereof for the purpose of producing steam by heat transfer) so as to discharge or cause to be discharged any gases unless such gases are limited to:

(1) A particulate matter content of no greater than 0.18 grams per million calories (0.10 pounds per million Btu) for solid fuel fired generators of greater than sixtythree million (63,000,000) kilocalories (kcal) per hour heat input (two hundred fifty (250) million Btu);

(2) A particulate matter content of no greater than 0.63 grams per million calories (0.35 pounds per million Btu) for solid fuel fired generators of equal to or greater than 6.3 but less than or equal to sixtythree million (63,000,000) kcal per hour heat input (twenty-five (25) but less than or equal to two hundred fifty (250) million Btu):

(3) A particulate matter content of no greater than 1.08 grams per million calories (0.6 pounds per million Btu) for solid fuel fired generators of less than 6.3 million keal per hou heat input (twenty-five (25) million Btu):

(4) A particulate matter content of no greater than 0.27 grams per million kcal (0.15 pounds per million Btu) for all liquid fuel fired steam generators.

(5) A particulate matter content of no greater than .01 grains per dry standard cubic foot for all gaseous fuel-fired steam generators.

(c) Asphalt concrete plants: The requirements of this provision shall apply to any asphalt concrete plant (any facility used to manufacture asphalt concrete by heating and drying aggregate and mixing with asphalt cement). An asphalt concrete plant is deemed to consist only of the following: driers, systems for screening, handling, storing, and weighing hot aggregate; systems for loading, transferring. and storing mineral filler; systems for mixing asphalt concrete; and the loading, transfer, and storage systems associated with emission control systems.

(1) No person shall operate the affected facilities of an asphalt concrete plant which existed on or prior to June 11, 1973, so as to discharge or cause to be discharged into the atmosphere any gases unless such gases are limited to:

(A) A particulate matter content of no greater than 230 mg per dscm (0.10 grain

(d) Grain Elevators: No person shall operate a grain elevator (a grain elevator is defined as any plant or installation at which grain is unloaded, handled, cleaned. dried, stored or loaded) without meeting the provisions of this subsection. Subdivision (1) of this subsection shall apply to any grain storage elevator located at any grain processing source which has a permanent grain storage capacity of thirtyfive thousand two hundred (35,200) cubic meters (one (1) million U.S. bushels) and any grain terminal elevator which has a permanent grain storage capacity of eighty-eight thousand one hundred (88,100) cubic meters (two and one-half (2.5) million U.S. bushels). All grain elevators subject to this rule (326 IAC 6-1) shall comply with the requirements of subdivision (2) of this section.

(1) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility except a grain dryer any process emission unless such emissions are limited to a particulate matter content of no greater than 0.07 gram per dry standard cubic meter (dscm)(0.03 grain per dry standard cubic foot (dscf)) for said facilities for which construction or modification commenced prior to January 13, 1977

(2) Grain elevators subject to this subdivision shall provide for good housekeeping and good maintenance procedures. Good housekeeping and maintenance is defined

Rule 2 Participate Emission Limitations for Sources of Indirect Heating

326 IAC 6-2-1 Applicability

Sec. 1. This rule (326 IAC 6-2) establishes limitations for sources of indirect

- (a) Particulate emissions from the combustion of fuel for indirect heating from all facilities located in Lake, Porter, Marion, Boone, Hamilton, Hendricks, Johnson, Morgan, Shelby, and Hancock Counties which were existing and in operation or which received permit to construct prior to September 21, 1983, shall be limited by 326 IAC 6-2-2.
- (b) Particulate emissions from the combustion of fuel for indirect heating from all facilities not specified in subsection (a) of this section which were existing and in operation or which received permits to construct prior to September 21, 1983 shall be limited by 326 IAC 6-2-3.
- (c) Particulate emissions from the combustion of fuel for indirect heating from all facilities receiving permits to construct on or after September 21, 1983 shall be limited by 326 IAC 6-2-4.
- (d) If any limitation established by this facilities specified in 326 IAC 6-2-1(a) rule (326 IAC 6-2) is inconsistent with applicable limitations contained in 326 IAC 6-1, then the limitations contained in 326 IAC 6-1 prevail.

$$Pt = \frac{0.87}{Q_{0.16}}$$

Where:

- Pt = Pounds of particulate matter emitted per million Btu (lb/mmBtu) heat input.
- Q = Total source maximum operating capacity rating in million Btu per hour (mmBtu/hr) heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity. whichever is specified in the facility's operation permit application, except when some lower capacity is contained in the facility's operation permit, in which case, the capacity specified in the operation permit shall be used.

For Q less than 10 mmBtu/hr, Pt shall not exceed 0.6. For Q greater than or equal to 10,000 mmBtu/hr, Pt shall not exceed 0.2. Figure 1 may be used to estimate allowable emissions.

- (e) If any limitation established by this rule (326 IAC 6-2) is inconsistent with applicable limitations contained in 326 IAC 12, New Source Performance Standards, then the limitations contained in 326 IAC 12 prevail.
- (f) If any limitation established by this rule (326 IAC 6-2) is inconsistent with a limitation contained in a facility's construction or operation permit as issued pursuant to 326 IAC 2, Permit Review Regulations, then the limitations contained in the source's current permits prevail.
- (g) If any limitation established by this rule (326 IAC 6-2) is inconsistent with a limitation required by 326 IAC 2, Permit Review Regulations, to prevent a violation of the ambient air quality standards set forth in 326 IAC-1-4, then the limitations required by 326 IAC 2 prevail.
- (h) The addition of a new facility at a source does not affect the limitations of the existing facilities unless such changes in the limitations are required by the provisions of 326 IAC 2 or 326 IAC 6-1.

326 IAC 6-2-2 Emission limitations for

Sec. 2. (a) Particulate emissions from existing indirect heating facilities located in the specified counties shall be limited by the following equation:

(b) The emission limitations for those indirect heating facilities which were existing and in operation on or before June 8, 1972, shall be calculated using the equation contained in subsection (a) of this section where: Q shall reflect the total source capacity on June 8, 1972. The resulting Pt is the emission limitation for each facility existing on that date and will not be affected by the addition of any subsequent facility. The particulate emissions from all of the facilities which were in existence on June 8, 1972, may be allocated in any way among these facilities provided that they will not result in a significantly greater air quality impact level at any receptor than that which would result if the particulate emissions from each of these facilities were limited to Pt; and provided that the emission limitations for each facility are specified in its operation permit. Significant impact levels are defined in 326 IAC 2-3(d).

(c) The emission limitations for those indirect heating facilities which began operation after June 8, 1972, and before September 21, 1983, and those facilities which receive permits to construct prior September 21, 1983 shall be calculated using the equation contained in subsection (a) of this section where: Q includes the capacity for the facility in question and the capacities for those facilities which were previously constructed or received prior permits to construct. The limitations for all previously permitted facilities do not change. The Q and Pt for each facility at a source which begins operation or receives a construction permit during this time period will be different.

326 IAC 6-2-3 Emission limitations for facilities specified in 326 IAC 6-2-1(b)

Sec. 3. (a) Particulate emissions from indirect heating facilities existing and in operation before September 21, 1983, shall be limited by the following equation:

$$Pt = \frac{C X a X h}{76.5 X Q^{0.75} X N^{0.25}}$$

Where:

- C = Maximum ground level concentration with respect to distance from the point source at the "critical" wind speed for level terrain. This shall equal 50 migrograms per cubic meter (μ/m^3) for a period not to exceed a sixty (60) minute time period.
- Pt = Pounds of particulate matter emitted per million Btu heat input (lb/mmBtu).
- Q = Total source maximum operating capacity rating in million Btu per hour (mmBtu/hr) heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity, whichever is specified in the facility's operation permit application, except when some lower capacity is contained in the facility's operation permit; in which case, the capacity specified in the operation permit shall be used.
- N = Number of stacks in fuel burning operation.
- a = Plume rise factor which is used to make allowance for less than theoretical plume rise. The value 0.67 shall be used for Q less than or equal to 1,000 mmBtu/hr heat input. The value 0.8 shall be used for Q greater than 1,000 mmBtu/hr heat input.
- h = Stack height in feet. If a number of stacks of different heights exist, the average stack height to represent "N" stacks shall be calculated by weighing each stack height with its particulate matter emission rate as follows:

$$h = \frac{\sum_{i=1}^{N} H_i X pa_i X Q}{\sum_{i=1}^{N} pa_i X Q}$$

Where:

pa = the actual controlled emission rate in lb/mmBtu using the emission factor from AP-42 or stack test data. Stacks constructed after January 1, 1971, shall be credited with GEP stack height only. GEP stack height shall be calculated as specified in 326 IAC 1-7.

(b) The emission limitations for those indirect heating facilities which were existing and in operation on or before June 8, 1972, shall be calculated using the equation contained in subsection (a) of this section where: Q, N, and h shall include the parameters for all facilities in operation on June 8, 1972. The resulting Pt is the emission limitation for each facility existing on that date and will not be affected by the addition of any subsequent facility. The particulate emissions from all of the facilities which were in existence on June 8, 1972, may be allocated in any way among these facilities provided that they will not result in a significantly greater air quality impact level at any receptor than that which would result if the particulate emissions from each of these facilities were limited to Pt; and provided that the or receives a construction permit during

emission limitations for each facility are specified in its operation permit. Significant impact levels are defined in 326 IAC 2-3-2(d).

(c) The emission limitations for those indirect heating facilities which began operation after June 8, 1972, and before September 21, 1983, and those facilities which receive permits to construct prior to to September 21, 1983, shall be calculated using the equation contained in subsection (a) of this section where: Q, N, and h shall include the parameters for the facility in question and for those facilities which were previously constructed or received prior permits to construct. The limitations for all previously permitted facilities do not change. The Q, N, h, and Pt for each facility at a source which begins operation

this time period will be different.

(d) Particulate emissions from all facilities used for indirect heating purposes which were existing and in operation on or before June 8, 1972, shall in no case exceed 0.8 lb/mmBtu heat input.

(e) Particulate emissions from any facility used for indirect heating purposes which has 250 mmBtu/hr heat input or less and which began operation after June 8, 1972, shall in no case exceed 0.6 lb/mmBtu heat input.

326 IAC 6-2-4 Emission limitations for facilities specified in 326 IAC 6-2-1(c)

Sec. 4. (a) Particulate emissions from indirect heating facilities constructed after September 21, 1983 shall be limited by the following equation:

$$Pt = \frac{1.09}{Q^{0.26}}$$

Where:

Pt = Pounds of particulate matter emitted per million Btu (lb/mm Btu) heat input.

Q = Total source maximum operating capacity rating in million Btu per hour (mmBtu/hr) heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity, whichever is specified in the facility's permit application, except when some lower capacity is contained in the facility's operation permit; in which case, the capacity specified in the operation permit shall be used.

For Q less than 10 mmBtu/hr, Pt shall not exceed 0.6. for Q greater than or equal to 10,000 mmBtu/hr, Pt shall not exceed 0.1. Figure 2 may be used to estimate allowable emissions.

(b) As each new indirect heating facility is added to a plant Q will increase. As a result, the emission limitation for each

progressively newer facility will be more stringent until the total plant capacity reaches 10,000 mmBtu/hr after which the emmission limit for each newer facility will be 0.1 lb/mmBtu heat input. The rated capacities for facilities regulated by 326 IAC 12, New Source Performance Standards, shall be included when calculating Q for subsequent facilities.

(This page left blank)

APPENDIX D
Plant Operating Logs

FLOW PPH FLOW PPH FLOW PCT PCT, PRESSURE LEVEL PRESSURE PRESSURE FLUE GAS GROTE 29433 400.0 53 6.5 -0.19 17.4 111.8 0 0.3 -0.58 519.3 80.8 29444 400.0 63 5.4 -0.01 11.4 0 0.03 -0.58 519.3 80.8 29445 400.0 63 5.4 -0.01 11.4 0 0.03 114.7 0.59 114.7 0.5						BOILER NUMBER	(1	DAILY REPORT					-12/06/90-
19578 9.0 53 6.5 -0.19 17.4 111.8 0.03 -0.61 536.2 20.19 17.4 111.8 0.02 -0.61 536.2 80.8	į	:	COAL FLOW PFH	AIR FLOW PCT	OXYGEN PCT.	FURNACE PRESSURE	DRUM LEVEL	DRUM PRESSURE	WINDBOX	UPTAKE	FLUE GAS-	-	
22453 400.6 63 6.5 -0.19 17.4 111.0 0.03 -0.58 519.3 60.8 29393 400.6 63 6.4 -0.18 18.5 112.2 0.61 536.2 80.0 28984 390.7 63 5.4 -0.01 16.3 114.9 0.62 -0.04 536.2 80.0 79.2 28985 400.0 73 2.5 -0.05 17.3 114.7 0.62 -0.09 79.2 36534 400.0 62 5.7 0.05 17.3 114.7 0.63 -0.09 79.2 36534 400.0 64 -0.03 22.8 112.5 0.63 -0.09 77.8 36534 400.0 64 -0.03 12.8 112.5 0.63 615.2 77.8 36534 400.0 63 -0.00 10.1 112.1 0.64 -0.04 77.8 37734 60.0 60 62 -0.00<	90130	19578		ני	,				10000	14000111	٠ ١ ١		TEMP. F
2993 3 400.0 65 6 5.4 - 0.01 18.5 112.2 0.20 - 0.61 536.2 60.0 6 800.0 70.2 8 800.0 86 800.0	01130	22453	400.6	9 F	ស្ត	-0.19		111.8	0.03	-0.58	519.3	88	00
28954 398.7 62 4.1 6.16 114.5 0.62 -0.89 598.0 772.2 28984 800.0 79 3.2 -0.26 17.3 114.7 0.29 -0.89 598.0 772.2 2898.0 773.2 2653.4 400.1 6.6 2.5 -0.86 6.6 2.9 -0.86 6.6 2.9 77.8 2553.4 400.1 6.6 2.5 -0.86 6.6 2.9 -0.86 6.6 2.9 77.8 2553.4 400.2 86 2.2 80 6.0 3 22.8 116.7 0.29 -0.86 6.6 2.9 77.8 78.4 2856.1 400.2 84 6.0 2.8 2 6.0 0.0 18.1 11.6 0.69 -0.87 6.15.2 77.8 78.4 2856.1 400.2 84 6.0 2.8 2 6.0 0.0 18.1 11.6 0.69 -0.77 6.14.7 77 78.4 2851.1 400.2 85 2.6 -0.80 0.0 18.1 11.4 0.0 0.77 6.13 78.4 2851.1 11.4 0.0 0.0 0.0 18.1 11.4 0.0 0.0 0.0 18.1 11.4 0.0 0.0 0.0 0.0 18.1 11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	3130	29393	400.0	1 E	្រ ម	91.6	18.5	112,8	Ø. 20	-0.61	536.2	9 6	100.
24085 3900.0 79 3.2 -0.75 114.9 0.45 -0.89 598.0 79.2 79.2 35.5 4900.0 79 3.2 -0.75 114.7 0.29 -1.00 585.2 78.9 79.5 78.9 35.5 400.1 9.6 9	4136	28944	398.7	82	. 4 . 4	19.61	18.1	114.5	Ø.62	-0.80	598.0	6.67	10. 10.
353751 4001.9 62 2.5 -0.035 19.3 114.7 0.29 -1.000 585.2 78.9 36584 8000.0 86 3.0 -0.03 22.8 112.7 0.56 -0.64 605.8 78.4 36632	@ :	28082	800.0	7.9	• 0	9 1	 	114.9	0.45	-0.89	598.0	79.2	7.361
36584 800.0 86 3.0 -0.03 22.3 116.7 0.56 -0.84 605.8 77.8 36532 400.0 86 3.0 -0.03 22.3 116.7 0.55 -0.84 605.8 77.8 36532 400.3 84 1.6 0.00 17.8 111.5 0.63 -0.86 615.2 77.8 77.8 39584 399.6 85 2.3 0.00 18.1 110.1 0.69 -0.76 615.9 78.4 37734 0.0 82 10.0 0.0 18.1 114.2 0.64 -0.77 611.1 78.4 38116 400.6 82 10.0 0.03 18.1 114.2 0.67 -0.77 611.1 78.1 114.3 64.5 37532 400.0 82 10.0 0.03 18.0 111.0 0.67 -0.70 624.4 66.5 37938 800.0 81 4.9 0.03 18.0 111.0 0.07 -0.70 624.4 66.5 37938 800.0 81 4.0 0.05 11.2 0.07 624.4 66.5 37938 800.0 81 4.0 0.05 11.2 0.07 111.0 0.07 624.4 66.5 37938 800.0 81 4.0 0.05 17.5 111.0 0.07 624.4 66.5 374212 60.0 111.0 0.00	23.30	35751	401.9	92	o n	0 .01 10 .01	17.3	114.7	Ø. 29	-1.00	5.65	78.9	118.9
34632	97.7	36504	800.0	96	, M	20.01	13. C	116.7	ø. 56	-0.84	605.8	78.4	9 50
38561 400.3 84 0.9 -0.00 17.1 11.6 0.69 -0.76 614.7 78.4 37734 0.0 83 2.3 0.00 18.1 11.6 0.69 -0.76 615.9 78.4 39088 399.6 85 2.6 -0.00 18.1 114.2 0.67 -0.77 611.3 78.4 36.15 78.4 37832 0.0 92 10.0 0.03 18.1 114.2 0.67 -0.77 620.5 78.1 38951 0.0 92 10.0 0.03 18.0 113.8 0.71 -0.70 620.5 78.1 38951 0.0 92 10.0 0.0 0.0 18.1 11.4 0.77 620.5 78.1 66.5 37938 0.0 82 2.6 0.0 0.0 11.4 0.70 620.7 611.3 66.5 37823 0.0 0.0 81 2.5 0.05 17.7 112.4 0.70 618.1 66.8 37821 0.0 0.0 82 0.0 0.0 17.7 112.4 0.70 618.1 66.8 37821 0.0 0.0 82 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9130	36632	8	94	1.6	9 6	ນ ເ	112,5	Ø. 63	-ଓ- ୫ଡ	615.2	77.8	196.7
37734 0.0 b3 2.3 b.00 16.2 106.8 0.64 -0.76 615.9 78.4 39988 399.6 b5 2.6 -0.00 18.1 110.1 0.69 -0.77 611.1 78.4 35988 399.6 b5 2.6 -0.00 18.1 110.2 0.67 -0.77 611.1 78.4 37832 400.3 b2 10.0 0.03 18.0 113.8 0.71 -0.70 620.5 78.1 37938 0.0 b.0 b2 2.6 0.03 18.0 111.4 0.70 624.4 66.5 37938 0.0 b.0 b2 2.6 0.03 18.0 111.4 0.70 -0.73 616.4 66.5 37938 0.0 b2 2.6 0.05 117.9 111.0 0.06 10.1 616.6 5.0 376.0 0.0 b1 2.5 0.05 17.5 112.4 0.70 -0.72 618.1 66.0 376.0 0.0 b2 1.4 0.06 17.7 112.4 0.70 -0.72 618.1 66.0 2.8 33642 400.9 82 0.0 70 0.06 17.7 115.4 0.69 -0.05 11.4 0.06 11.5 0.0 81 5.9 0.0 70 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.9 0.0 81 5.0 0.0 81	9136	38561	400.3	84	· 6	0000	D .	111.6	Ø. 69	-ið. 76	614.7	78.4	6 10 C
399.6 85 2.6 -0.00 10.7 10.64 -0.77 611.1 78.4 36116 400.6 82 1.4 0.04 17.7 114.2 0.67 -0.77 620.5 78.1 36116 400.6 82 1.4 0.04 17.7 113.8 0.71 -0.70 620.5 78.1 37232 400.3 82 2.6 0.03 18.0 111.4 0.70 624.4 66.5 37938 400.0 81 2.5 0.05 18.0 111.0 0.60 -0.71 616.4 66.5 37938 900.0 81 2.5 0.05 17.5 112.4 0.70 -0.72 618.1 66.8 3760 0.0 80 1.4 0.06 17.7 112.4 0.70 -0.72 618.1 66.8 33642 400.0 82 0.0 0.0 18.0 115.1 0.22 -0.81 581.9 60.6 2757 399.3 61 3.0 -0.20 18.0 112.4 0.50 552.1 76.5 764 KP 6802 LB 78 3.2 -0.05 18.1 112.4 0.50 5	9136	37734	0.0	83	ณ์	96	10.0	112,	Ø.69	-v. 76	615.9	78.4	126.2
36116 400.6 B2 1.4 0.04 17.7 109.9 0.71 -0.77 620.5 78.1 38951 0.0 0 92 10.0 0.03 16.0 113.0 0.71 -0.70 611.3 66.2 37232 400.3 68 2.6 0.03 16.0 111.4 0.70 -0.71 -0.70 611.3 66.5 37823 800.0 82 2.6 0.03 17.9 111.4 0.70 -0.73 616.4 66.5 37823 800.0 81 2.5 0.05 11.4 0.06 111.0 0.60 -0.71 616.4 66.5 37823 800.0 81 2.5 0.05 17.5 112.4 0.72 -0.72 618.1 66.8 37600 0.0 80 1.4 0.06 17.7 115.4 0.72 -0.70 618.1 66.8 37500 0.0 82 0.9 0.06 17.7 115.4 0.69 616.2 67.6 336.2 400.9 66 0.9 -0.19 18.0 115.1 0.69 -0.81 589.1 60.6 52.3 -0.19 18.0 111.8 0.49 -0.85 581.9 60.6 52.3 -0.20 18.1 18.6 0.17 -0.66 552.1 76.5 55	95:	39088	399.6	85		000	U .	108.8	۵.64	-0.77	611.1	78.4	5 761
38951 0.0 92 10.0 0.03 16.0 113.6 0.71 -0.70 611.3 66.5 37232 400.3 68.0 113.6 0.71 -0.70 624.4 66.5 37938 0.0 82 2.6 0.03 17.9 111.4 0.70 -0.73 616.4 66.5 37938 0.0 82 2.6 0.03 17.9 111.4 0.70 -0.71 616.4 67.4 379823 800.0 81 2.5 0.05 17.5 112.4 0.72 616.1 66.8 37600 0.0 82 0.05 17.5 112.4 0.72 616.1 616.6 8.9 33642 400.0 82 0.0 70 -0.72 616.1 616.2 67.6 33642 400.0 82 0.0 70 -0.19 18.0 111.8 0.49 -0.85 581.9 60.6 23.3 22.4 0.0 1 11.8 0.49 -0.85 581.9 60.6 23.3 22.3 27579 339.3 61 3.0 -0.21 18.4 110.5 0.17 0.66 552.1 76.5 70 558.7 60.4	9 C C	36116	400.6	82		9 9	1 0 1	114, 2	0.67	-W.77	620.5	78.1	124.4
37232 400.3 BB 5.0 0.03 17.9 111.4 0.70 624.4 66.5 3793B 0.00 B2 2.6 0.05 16.0 111.4 0.70 -0.73 616.4 67.4 3793B 0.0 B2 2.6 0.05 16.0 111.0 0.60 -0.71 616.4 67.4 37823 B00.0 B1 4.8 0.04 17.8 112.4 0.72 -0.72 618.1 66.8 37600 0.0 B2 0.05 17.5 112.4 0.72 -0.70 618.1 66.8 37600 0.0 B2 0.0 0.06 17.7 115.4 0.69 616.2 67.6 33642 400.0 B2 0.0 0.06 17.7 115.4 0.69 616.2 67.6 33642 400.0 65 0.9 70 -0.19 18.0 115.1 0.22 -0.81 589.1 63.6 23.3 22453 0.0 70 599.3 61 3.0 -0.21 18.4 110.5 0.17 -0.65 558.7 60.4	9 (P	38951	Ø.0	92	10.0	20.0	· · · · · ·	149.9	Ø. 71	-0.70	611.3	68.2	153.4
37938 0.0 82 2.6 0.05 111.4 0.70 -0.73 616.4 67.4 37823 800.0 81 4.6 0.05 111.0 0.64 -0.71 616.4 66.5 37823 800.0 81 2.5 0.05 17.5 112.4 0.72 618.1 66.8 37600 0.0 81 2.5 0.05 17.5 116.4 0.72 618.1 66.8 37600 0.0 82 0.05 17.5 116.4 0.72 -0.70 618.1 66.8 336.4 400.9 62 0.0 70 -0.19 18.0 115.1 0.22 -0.81 519.1 63.6 23.3 245.3 0.0 78 11.4 -0.19 18.0 111.8 0.49 -0.71 614.2 63.3 245.3 0.0 78 11.4 -0.19 18.0 111.8 0.49 -0.65 519.1 63.6 275.9 0.0 59.3 61 3.0 -0.21 18.0 112.6 0.17 -0.65 558.7 60.4 110.5 0.17 -0.66 552.1 76.5 570 50.0 570 558.7 60.4	5 C	37232	400.3	88	, S	2 6	9.0	113.8	0.71	⊸0.70	624.4	66.5	0.55
37823 800.0 81 4.8 0.04 17.6 111.0 0.64 -0.71 616.4 66.5 36.71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0 0 0	37938	9.9	82		200	£	111.4	ต. 7 ผ	-0.73	616.4	67.4	9 60
35715 0.0 0 0 1 2.5 0.05 17.5 112.4 0.72 -0.72 610.1 66.0 1 37600 0.0 0 0.0 1.4 0.06 17.5 112.4 0.72 -0.70 610.1 66.0 1 34216 400.0 0 82 0.9 0.0 6 17.7 115.4 0.69 616.2 67.6 13.3 24518 400.0 66 0.0 17.7 115.4 0.69 616.2 67.6 13.3 24539 0.0 70 70 59.3 14 16.0 111.0 0.49 -0.71 614.2 63.6 53.3 24539 0.0 70 59.3 61 1.4 -0.19 18.0 111.0 0.49 -0.0 85 591.9 60.6 27.5 599.3 61 3.0 -0.20 18.0 112.6 0.17 -0.66 552.1 76.5 576.4 112.6 0.17 -0.66 552.1 76.5 576.4 112.6 0.17 -0.66 552.1 76.5	50.0	37823	8ଉଜ. ଜ	81	4.8	9.00	9.0	111.0	0. 68	-0.71	616.4	66.5	131.0
34216 400.0 80 1.4 0.06 17.9 106.9 0.70 610.1 66.8 34216 400.0 82 0.9 0.06 17.7 112.4 0.70 610.1 66.8 33.4216 400.0 82 0.9 0.06 17.7 115.1 0.29 69.9 616.2 67.6 33.3 245.3 0.0 79 1.4 16.0 111.8 0.49 0.70 59.1 59.1 63.6 59.0 70 59.3 61 3.0 0.22 18.0 110.5 0.14 0.66 552.1 76.5 76 KP 6802 LB 78 3.2 -0.05 18.1 112.4 0.55 19.7 60.6	900	36715	Ø.9	вı	ທີ່	9.0	17.8	S	Ø. 7.8	-0.72	618.1	66.0	128.6
34216 400.0 B2 0.9 0.06 17.7 115.4 0.69 616.2 67.6 33642 400.9 66 0.9 0.06 17.7 115.4 0.69 -0.71 614.2 63.3 24539 0.0 78 1.4 -0.19 18.0 115.1 0.22 -0.81 589.1 63.6 29037 0.0 59 2.3 -0.21 18.4 110.5 0.14 -0.70 558.7 60.4 27579 399.3 61 3.0 -0.20 18.0 116.6 0.17 -0.66 552.1 76.8	1000	3/500	ଜ.ଜ	86		9.06	7 .	112.4	ø.72	- છ. 7હ	618.1	66.B	197.9
33642 400.9 66 0.9 -0.19 17.7 115.4 0.69 -0.71 614.2 63.3 - 24539 0.0 78 1.4 -0.14 16.0 1115.1 0.22 -0.81 589.1 63.6 29037 0.0 59 2.3 -0.21 10.4 110.5 0.14 -0.70 558.7 60.6 - 27579 399.3 61 3.0 -0.20 18.0 112.6 0.17 -0.66 552.1 76.5	900	34216	400.0	82	6.9	9.06	17.3	106.9	Ø. 7Ø	-0.69	616.2	67.6	128.3
24539 0.0 78 1.4 -0.14 16.0 111.8 0.22 -0.81 589.1 63.6 29.037 0.0 59 2.3 -0.21 16.0 111.8 0.49 -0.85 581.9 60.6 275.7 60.4 -0.27 558.7 60.4 -	900	33642	400.9	99	6.9	9. 6.		113,4	Ø.69	-0.71	614.2	63.3	9 80
27579 399.3 61 2.3 -0.21 18.4 110.5 0.14 -0.85 581.9 60.6 2779 588.7 60.4 -0.50 11.8 0.44 -0.70 558.7 60.4 -0.50 11.8 0.17 -0.66 558.7 60.4 -0.50 11.8 6.4 6.4 6.4 6.5 588.7 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4	96:1	24539	0.0	7.8	1 4		5	115.1	ය. වෙය	-Ø.81	589.1	7 2 7	1 1
27579 399.3 61 3.0 -0.20 18.0 116.6 0.17 -0.50 558.7 -0.60.4		29W37	Ø. Ø	ร์	, v	7 .0	16.0	111.8	6, 49	-0.85	581.9	9 4	100
764 KP 6802 LB 78 3.2 -0.05 18.1 112.4 0.52 2.	3.30	27579	399.3	19) S	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18.4	110.5	Ø. 14	-a. 7a	558 7	2 6 7	100.3
KP 6802 LB 78 3.2 -0.05 18.1 112.4 0.52 -0.75 -0.05	# 1						18.0	112.6	0.17	-0-66	552.1	1 'S'	2
0 07 0 750 0 00 00 00 00 00 00 00 00 00 00 00 00		764 KP			3, 2	ii II #	l) II	112.4	aaneeannus 0.52	-0.75	======================================	10.0 70.0	

12/10/90	Ш	'. F TEMP. F	6 6			9 6	9 6	25.00 88.00 88.00 88.00	Š	6	S	8			:		ļ			; ; ;				94.3	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	a.a a.ee		
	GĀS	IEMP. F TEMP.	567.1 86.	m			7	. 6	9	ın.			M)							1			100			582.9		
	UPTAKE		-0.47	-0.47	-0.51	-0.34	-0,39	-0.37	-0.49	-0.45	-6.54	-8.53		-8.51	16.48	6 4 . 6	\$. 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 .	+ · ·	4.6.4		0 t	1 6	9 6	-0.43		-0.46		
	WINDBOX		90.0	9.06	ଜ. ଡS	0.35	6.30	Ø. 33	0, 14	Ø. 19	90,00	21.5 S	S	5.15	2 6	9 6	9.6			00.0		0 6	100.00	00.00 00.00		59 59		
BOILER NUMBER 4 DAILY REFORT	DRUM		0.51	114.0	116.0	116.4	117.1	116.7	120.9	180.4	110.	116.3	0 0	111.2 5.111	7 7 7	11.15 4.10 4.10	116.6	113.4	112.3	113.8	112.8	115.3	114.2	111.8		†		
UMBER 4 1	DRUM LEVEL	7		- L	11.0	9 /	4.	10.6	.		. 4		6.81	9.6	6.6	10.0	10.0	7.9	6.9	11.6	9.6	9.8	9.8	9.4				
BOILER N	FURNACE PRESSURE	ร ถ ร	-0.17	7 5		9 6 5 6	90.00	9. S	9 5	100 m	10 C	-6.25	-ର. ୧୯	-0.15	-0.18	-0.19	-Ø. 18	-Ø. 18	-0.19	-0.17	-0.22	-0.18	-Ø. 19	-Ø. 18	-0.16	 		
	OXYGEN PC1.	4.8	4.2	4.1	1.7	. 5		u o	8,5	1.0	3.9	1.1	4.0	0.3	6. 5	1.5	9. 9	ผ	9 .	3.6	લ	4.7	4.7	4. G	2.5			
	AIR FLUW PCT	4	40	41	48	49	64	48	47	44	45	43	44	43	4 0	04	39	ري د ا	39	9 (9 6	ş (\$ ¢	Ü	40			
	COAL FLOW PPH	799.3	& &	0.0	Ø.	400.0	6	8.8	396. 1	400.3	400.3	9.6	400	466.6	S (S 6	5 6 5 6	9 00	0.6		9 6	6	9 6 6 5 7		4395 LB			
	STEAM FLOW PPH	17419	10100	22387	25173	28559	29187	54069	29981	25974	36666	21240	01040	245.40		2326.1	16851	15262	19732	17167	23145	20203	16325		538 KP		:	,
	TIME	40:30	97.76	97.75	04150	82138 62138	96138	67138	00 C	97.56	92.41	25.01	27.7	14:38	130.48	16,30	17130	18:30	19136	20130	21130	22130	23:30		•			

STERM			DXYGEN	FURNACE	DRUM	M. S.C.	X DRUNTA	HOTOKE	מטט בור נב	2000	21000
201	THE FLUW LEM	FLOW PCT	FC.	PRESSURE	LEVEL	PRESSURE	PRESSURE	PRESSURE	TEMP	۲	TEMP. F
5243	6	ĩ	6	6	;						
54887	6	. 5		9.19	5 ·	96.8	2.06	0.59	420,7	163.9	80.2
00000) (3 1	٠ ١	. 63	21.3	125.5	5. 2G	6.93	545.8	143.0	4.4
17790	5	d d	10. U	-0.07	20.0	1.2.7. A		1 94	A 2.2 B	* * * * *	
22631	S	58	10.0	-0.01	19,5	7 100	67.60	_	;	11114	1.16
4.	INEC				3		12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOW LOW	D140	PIGE. PRES.	
1.84	546.6	107.9	91.8								
52585	8.8		6	6		1					
67242	5				17.6	125.8	4.32	1.89	538.4	107.3	84.7
		9 1	9.0	-10.19	21.9	131.6	4.28	2,31	571.7	104.4	76.6
	9 1	60	19.0	-0.18	19.9	127.1	4.21	1.96	564.7	102	0 0
2000	ල ල	63	10.0	-0.22	n.61	177 9	50. 7	0			0
65073	6 6	6.6	19.6	10.01	0, 6)		ָ ט ט	i e	2000	u	200
60913	S	57	5	00			0 : 0 :	ะ	3/3.4	1 WE. II	96.9
37516	6	3 6		9.00	13.9	126.9	5, 10	1.92	543.9	104.7	99,5
	9 6	ī ;	20.0	-0.25	18.6	117.2	5,08	1, 25	491.7	105.3	100.2
31160	9 ·	64	10.0	-0.16	18.9	121.1	5.11	1,65	484.9	106.9	99.5
00000	9 ·	Ş,	10.0	- (A. 14	19.7	109.5	ທີ. ຄຸ	1.89	181.6. ft.	0.791	4
88/80	9 9	59	10.0	-W.1B	19.1	1.09.8	. 15 15	5	6.52	124.7	
14600	S	35	1.S. S.	-18.21	19.3	0.461	02.50	MOON	010	2000 0000	
	INMC				1	i	1			C. P. N. D.	
1.97	500.3	118.5	102.4								
29917	0.0	6.1	10.0	-0.20	5.43	104.0	ii o		н 5		
46871	9.0	55	10.5	47			7 .	- I	יייי ייייייייייייייייייייייייייייייייי	7 ***	116.6
28208	S	. E.	6 5		. L	1 201	5.63	2.57	495.6	112.4	118.9
007.50	5	ע נ		07 %	0 :	1 W.E. 4	4.98	હા	459.3	112,4	112.7
2000		3 1	9.00	-10, 13	18.8	1.20.1	છ. 80 19	1.73	458, 1	113.1	113.7
1001	5 :	ç i	5.	୍ୟ ହେନ	18,6	119.6	5.32	1.44	441.2	114.3	116.9
	s	4	1G. Ø	-0.19	16.4	113.6	4.99	1.64	407.4	114.0	3
10 10 10 ICM	B125 F102	PINZ. PRES.			+ vo-	INMC					
4541	9. 9	31	10.01	-Ø. 18	18.9	104.9	60.00	27 6	7 502		. 70.
4726	9	31	20.00		5	· 10	300	9.	4 . U	1 14. 1	1,05.3
				6.61	13.40		S.	Ø. 44	307. B	114.0	97.9
977 KP	KP 023	W23:53:12 NORM	1 8125	PINE. PRES	S.				UNDERDUNKTURAN UNDERDAR		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
LB 1250 10	10.0 -0.15	3 19.5	116.9		1.69	493.8	116	e e	1 NWC		
							3 1 1	1			

APPENDIX E

Coal Analysis

Branch Code	- 44	
Lab. No	8678	
Date Rec'd	61/21/91	
Date Sampled		
Sampled By	YOURSELVES	

SAMPLE IDENTIFICATION ___

P.O. #F1261791MV137 BOILER #3 RUN #1 CAN # 2030 12/06/90

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Recid.	13.59	6.14	33.41	46.86	11677	1.00
Dry Basis		7.11	38.66	54.23	13514	1.16
M-A-Free					14549	

FOR YOUR PROTECTION THIS DOCUMENT HAS BEEN PRINTED ON CONTROLLED PAPER STOCK. NOT VALID IF ALTERED.

Respectfully Submitted.

Branch Code	-44	
Lab. No	8679	
Date Rec'd	01/21/91	
Date Sampled		
Sampled By	YOURSELVES	

SAMPLE IDENTIFICATION ____

P.O. #F1261791MV137 BOILER #3 RUN #2 CAN # 1473 12/06/90

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Recid.	14.31	6.96	32.54	46.19	11363	0.92
Dry Basis		8.12	37.97	53.91	13261	1.08
M-A-Free					14433	

Respectfully Submitted

Branch Code	44	
Lab. No	8680	
Date Rec'd	01/21/91	
Date Sampled		
Sampled Rv	YOURSELVES	

STANDARD LABORATORIES, INC.

305 CSG/DEMPH BLDG. 223 - HEAT PLANT ATTN: MR GRAHAM GRISSOM AFB, IN 46971-5320

SAMPLE IDENTIFICATION =

P.O. #F1261791MV137 BOILER #3 RUN #3 CAN # 1284 12/86/98

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB	% Sulfur
As Recid.	11.20	7.31	34.11	47.38	11961	1.05
Dry Basis		8.23	38.41	53.36	13402	1.18
M-A-Free					14605	

Respectfully Submitted, .

42

Branch Code	44	
Lab. No	8681	
Date Rec'd	01/21/91	
Date Samoled		
Sampled By	YOURSELVES	
Sampled by		

SAMPLE IDENTIFICATION ____

P.O. #F1261791MV137 BOILER #4 RUN #1 CAN # 4740 12/10/90

	% Moisture	% As':	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Recid.	12.18	7.70	32.00	48.12	11641	0.95
Dry Basis		8.77	36.43	54.80	13256	1.08
M-A-Free	····				14530	

FOR YOUR PROTECTION THIS DOCUMENT HAS BEEN PRINTED ON CONTROLLED PAPER STOCK. NOT VALID IF ALTERED.

Respectfully Submitted.

MADE M. SMIT

43

Branch Code		
Lab. No	8682	
Date Rec'd	01/21/91	
Date Sampled		
Sampled By	YOURSELVES	

SAMPLE IDENTIFICATION _____

P.O. #F1261791MV137 BOILER #4 RUN #2 CAN # 909 12/10/90

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Recid.	13.11	6.98	32.81	47.10	11614	0.98
Dry Basis		8.04	37.76	54.20	13367	1.13
M-A-Free					14535	

Respectfully Submitted,

Branch Code	44	
Lab. No.	8683	·
Date Rec'd	01/21/91	
Date Sampled		
Sampled By	YOURSELVES	

SAMPLE IDENTIFICATION _____

P.O. #F1261791MV137 BOILER #4 RUN #3 CAN # 0332 12/10/90

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Rec d	14.39	7.26	31.84	46.51	11334	0.94
Dry Basis		8.48	37.19	54.33	13239	1.10
M-A-Free					14466	

Respectfully Submitte

Brand Code	44	
Lab. No	8684	
Date Rec'd	61/21/91	
Date Sampled	••••	
Sampled By	YOURSELVES	

SAMPLE IDENTIFICATION _____

P.O. #F1261791MV137 BOILER #5 RUN #1 CAN # 1756 12/11/90

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Recid	11.09	6.38	35.61	46.92	12152	1.09
Dry Basis	****	7.18	40.05	52.77	13668	1.22
M-A-Free			-		14724	

Respectfully Submitted,

Branch Code	44	
Lab. No	8685	
	01/21/91	
Date Sampled		
Sampled By	YOURSELVES	

SAMPLE IDENTIFICATION ____

P.O. #F1261791MV137 BOILER #5 RUN #2 CAN # 4120 12/11/90

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Rec'd.	11.95	6.74	34.20	47.11	11931	0.76
Dry Basis		7.65	38 85	53.50	13549	0.86
M-A-Free					14672	

FOR YOUR PROTECTION THIS DOCUMENT HAS BEEN PRINTED ON CONTROLLED PAPER STOCK. NOT VALID IF ALTERED.

Respectfully Submitted, .

47

Branch Code	44	
Lab. No	8686	
Date Rec'd	01/21/91	
Date Sampled		
Samoled By	YOURSELVES	

SAMPLE IDENTIFICATION _____

P.O. #F1261791MV137 BOILER #5 RUN #3 CAN # 2819 12/11/90

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Recid	11.59	6.19	34.98	47.24	12117	1.12
Dry Basis		7.00	39.57	53.43	13705	1.27
M-A-Free					14737	

Respectfully Submitted,

48

 $\label{eq:appendix} \textbf{APPENDIX} \ \ \textbf{F}$ Port Locations and Sampling Points

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

Stack ID: BYPASS Stack diameter at ports: 5.5 (ft)

Distance A (ft) 11.5 (duct diameters) 2.1

Recommended number of traverse points as determined by distance A: 12

Distance B (ft) 39.5 (duct diameters) 7.2

Recommended number of traverse points as determined by distance B: 12

Number of traverse points used: 12

APPENDIX G
Boiler 3 Field Data

	PI	RELIMINARY	SURVEY (Stack Ge			NO. 1	
BASE		PLANT	1	DI	+	A	·
DATE		HI.	AM C	1/4	<u> </u>	Bypass stack	
5 Dec 70) 		F	FOE	HL		. 4 1/12
SOURCE TYPE AND MA	KE						
SOURCE NUMBER		INSIDE STACE	OIAMETE	R		1.	
RELATED CAPACITY			 1	TYPE F	UEL	66	Inches
					····		
DISTANCE FROM OUTSI	H"nipple		ER				Inches
NUMBER OF TRAVERSE	is Thirty	NUMBER OF F	OINTS/TR				
Σ	1	CATION OF SA	MOLING B	6		VERSE	
			TANCE F		Tono Ina	TOTAL DISTANCE	FROM OUTSIDE
POINT	PERCENT OF DIAMETER		(Inches)	.L		OF NIPPLE TO SA (Inche	MPLING POINT
<u> </u>						6.9	
<u> </u>						13.7	
}						135	
4						50.5	
5						60.3	
6						67.1	
						·	
					·		
· ·			····				
· · · · · · · · · · · · · · · · · · ·							
· ·							

	PRELIMINARY SURV	EY DATA SHEET NO. 2 emperature Traverse)	
BASE		DATE	
BOILER NUMBER	<u> </u>	6 Dec 90	
3			
INSIDE STACK DIAMETER	<i>'</i> /		Inches
STATION PRESSURE	(0)		7- 17-
STACK STATIC PRESSURE	101		In Hg
SAMPLING TEAM			In H20
SAMPENTO LEAM			
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	√ V _p	STACK TEMPERATURE (OF)
	0.065		403
<u>)</u>	0.07		416
3	0.08		410
4	0.1/		411
5	0.11		420
6	0 . [420
	F15 = 12		Ts = 417
	FPM = 1298		
	f al culaded		
	hizale din = 0.4343		
	AVERAGE		
	C 3		

TRAVERSE SAMPLING PRESSURE CO TRAVERSE SAMPLING TIME CO TRAVERSE SAMPLING PRESSURE TO (10.25) TO	STACK TEM (oF) (oF) (aB) (Security Sec	Pre profited Co. Pre profit lea pre train leak chost post profit leak chost profit	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ta . Vp	* * * * * * * * * * * * * * * * * * *	STATION PRESS STATION PRESS 2. 9, 0 HEATER BOX TEMP PROBE LENGTH PROBE LENGTH O, 384 Cp O, 8 44 DRY GAS FRACTION (Fd) PROBE CP O, 9 44 DRY GAS FRACTION (Fd) OOT TEMP OOT TEMP OOT TEMP OOT TEMP	in Hg of the state of the state outlet remp (9)
FLANT C. Dec 90 PLANT Heating flant 8, let BASE C-rissen AFE SAMPLE BOX NUMBER WETER BOX NUMBER A. M. TELL # D. CO TRAVERSE SAMPLING THE OW/OM 1 A 0 (12.5) 2 C 3 14 4 15 4 2 5 2 5 2 5 2 5 2 5 2 5 2 5	STACK TEMP STACK TEMP (oF) (OR) (OR) 3 3 5 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	CITY AAD P)	्रेभी हैं ।	FGCO-A CO TITER CHOCK ITHER CHOCK THER CHOCK THER CHOCK THER CHOCK THER CHOCK TO DILLT	$\frac{R}{r^{2}} \cdot V_{P}$ $\frac{r}{r'} H_{11} - c K$ $\frac{r}{r} \cdot (r (r) \cdot h h_{12})$ $\frac{(OF)}{c \cdot c \cdot c} \cdot (c \cdot c \cdot h h_{12})$		SON PRESS 2. 4, 101 ER BOX TEMP HEATER SETTIN HEATER SETTIN 0, 381 0, 844 AS FRACTION (FG) SAMPLE SAMPLE TEMP (GF)	igus out
DATE (Dec 90 PLANT Heating Flant BASE (Frissin AFB SAMPLE BOX NUMBER ACOMYON TRAVERSE SAMPLING TO (10.25) 2	STACK TEMP (OF) (OR) (OR) 3 3 5 3 49	bur bur CO VELOCITY WEAD (Vp)	Pre pit Pre pit Pre frain Pre	FGCP-A 2 7 Co vit leak chock (1) It at chock (1) It leak chock (1)	$\frac{R}{r^3} \cdot V_P$ $\frac{r}{r'}H_{11} - e^{i}K$ $\frac{r}{r} \cdot (i \cdot i \cdot i \cdot h_{12})$ $\frac{(oF)}{4} \cdot \frac{(oF)}{(oF)}$		ER BOX TEMP ER BOX TEMP HEATER SETTIN HEATER SETTIN O, 384 O, 844 AS FRACTION (Fd) SAMPLE SAMPLE TEMP (GF)	igui de la constante de la con
CO TRAVERSE SAMPLING TRAVERSE SAMPLING TRAVERSE SAMPLING TRAVERSE SAMPLING TRAVERSE SAMPLING TRAVERSE SAMPLING TIME (MIN) 1 A D (10.25) 2 L 2 L 3 L 4 L 5 L 5 L 6 B 6 B 7 L 6 B 7 L 6 B 7 L 7 L 7 L 7 L 7 L 7 L 7 L 7 L 7 L 7 L	STACK TEMP (oF) ((TS) 3 3 5 (RS) 3 48	VELOCITY HEAD (VP)		FGCD'A 2 7 Co 1 1 leak check (1 It ak check (1 It leak check (1 It leak check (1 It ak check (1	$\frac{\mathrm{Im}}{1} \cdot \mathrm{Vp}$ $\frac{\mathrm{K} - \mathrm{ofk}}{1''H_{11}} - \mathrm{ofk}$ $\frac{\mathrm{K} - \mathrm{ofk}}{1''H_{12}} = \frac{\mathrm{cos}}{1}$ $\frac{\mathrm{Gas} \mathrm{MeT}}{1}$ $\frac{\mathrm{Gas} \mathrm{MeT}}{1}$ $\frac{\mathrm{Gas} \mathrm{MeT}}{1}$	# # # # # # # # # # # # # # # # # # #	THEATER SETTING THEATER SETTING THEATER SETTING THE NOTH NOTH NOTH NOTH NOTH NOTH NOTH NOTH	w law and a second
PLANT Heating flant BASE (Lrissim AFB SAMPLE BOX NUMBER METER BOX NUMBER AMPLING TRAVERSE SAMPLING POINT TRAVERSE SAMPLING POINT (min) 1 A 0 (10.25) 2 5 3 14 4 15 5 26 5 30	STACK TEMP (oF) (TS) 3 3 5 3 48	Suk DUK DUK VELOCITY HEAD (Vp)		Co C	$\begin{array}{c} R \cdot V_{p} \\ \gamma'' H_{1j} \end{pmatrix} - \epsilon K \\ \gamma'' H_{1j} \end{pmatrix} - \epsilon K \\ \kappa - \epsilon K \\ \kappa - \epsilon K \\ \kappa \cdot K \left((\varsigma') h H_{2j} \right) \\ \kappa \cdot K \\ \kappa \cdot K \left((\varsigma') h H_{2j} \right) \\ \kappa \cdot K \\ \kappa \cdot K$	# # # # # # # # # # # # # # # # # # #	HEATER SETTIN LENGTH E AREA (A) 6:4 0, 384 O, 8 4 AS FRACTION (F) SAMPLE SAMPLE TEMP (9F)	in i
Heating Flant SAMPLE BOX NUMBER METER BOX NUMBER AMPLES SAMPLING TRAVERSE SAMPLING TRAVERSE SAMPLING TO (12.5) 1 A D (12.5) 2 C 3 14 4 15 5 16 4 15 5 26 5 30	STACK TEMP (OF) (TS) 3 3 5 3 48	VELOCITY HEAD (Vp)		irak check (irak check (irak check (irak check (irak check (irak check c			LENGTH LE AREA (A) d.(1) 0, 381 0, 844 AS FRACTION (F) SAMPLE SAMPLE TEMP (9F)	MPIN OUTL
SAMPLE BOX NUMBER METER BOX NUMBER Autech # > Ow/Qm Co TRAVERSE SAMPLING POINT (min) A 0 (10.25) A 15 B 16 B 20	STACK TEMP (OF) (TS) (3 3 5	VELOCITY HEAD (Vp) 0.055		IT TENT CHOCK (I	$\frac{1}{r} H_{ij} - \epsilon K$ $\frac{1}{r} \left(\frac{1}{r} \left(\frac{1}{r} \right) H_{ij} \right)$ $\frac{1}{r} \left(\frac{1}{r} \left(\frac{1}{r} \right) H_{ij} \right)$ $\frac{1}{r} \left(\frac{1}{r} \right)$ $\frac{1}{r} \left(\frac{1}{r} \right)$	A LEE	E AREA (A) d:4 0, 8 4 0, 8 4 AS FRACTION (FD SAMPLE BOX TEMP (QF)	MPIN OUTL
SAMPLE BOX NUMBER METER BOX NUMBER A. A. Le. L. # S. Co TRAVERSE SAMPLING TRAVERSE SAMPLING TRAVERSE SAMPLING TIME NUMBER (min) 1 A 0 (10.25) 2 5 16 4 15 5 16 4 15 5 26 5 30	STACK TE (OF) 3 48	VELOCITY HEAD (Vp)	_	ain least chuch Op 3. 2.72 Op 3. 2.72 Cas Samue Volume (cas fi)	C of (C) in the GAS METT (OF) (OF)	A 1000	LEAREA (4) dia 0, 381 0, 8 (4) AS FRACTION (F) SAMPLE BOX TEMP (9F)	MINIONI JTUO PER
METER BOX NUMBER VALUE 4 4 5 Co Co TRAVERSE SAMPLING POINT TIME NUMBER (min) 1 A 0 (12.5) 2 2 2 3 4 15 5 16 4 15 5 16 5 5 6	3 3 5 (°F) 3 4 8 8 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	VELOCITY HEAD (Vp)	_ , , , , , , , , , , , , , , , , , , ,	ain leafe chack ain leafe chack 00 3 272 CAMPLE VOLUME (CAM)	CAS METI GAS METI IN (OF) (OF)		0, 381 0, 384 0, 84 AS FRACTION (FG) SAMPLE BOX TEMP (QF)	MPIN OUTL
TRAVERSE SAMPLING POINT TIME NUMBER (min) 1 A 0 (10.5) 2 5 3 14 4 15 5 26 5 30	57ACK TE (0F) 3 48	VELOCITY HEAD (Vp)	E I I	OD 3 272 SAMPLE VOLUME (Ca ft)	GAS METT GAS METT IN GOF) GOF GOF GOF GOF GOF GOF GO	1 1 1 1 1	0, 384 0, 384 0, 844 AS FRACTION (FG BOX TEMP (OF)	IMPIN OUTE FEI
Co TRAVERSE SAMPLING POINT TIME NUMBER (min) 1 A D (10.25) 2 C 3 1 L 4 IS 5 1 L 5 2 L 5 2 L 6 3 C	STACK TE (OF) 3 3 48	VELOCITY HEAD (Vp) 0.055	i i i	OD J. 272. GAS SAMILE VOLUME (CU ft)	GAS METI IN (AT) (OF) (OI)	1 W V V	0.844 AS FRACTION (Fd) SAMPLE BOX TEMP (GF)	IMPIN OUTL TEI
TRAVERSE SAMPLING POINT THE (min) 1 A 0 (10.5) 2 5 16 4 15 5 16 5 16 6 3 6	STACK TE (0F)	VELOCITY HEAD (Vp)	ORIFICE OIFF, PRESS, (H)	SAMPLE VOLUME (Ca ft)	GAS MET IN (T) (OF) (OI	ER TEMP (G OUT (R) (OF)	O. 8 4 AS FRACTION (FG SAMPLE BOX TEMP (OF)	
TRAVERSE SAMPLING POINT THE (MIN) 1 A D (10.5) 2 C 3 14 4 15 5 16 5 20	(oF) 3 48	VELOCITY HEAD (Vp) 0.055	ORIFICE DIFF. PRESS. (H)	OD 1 272 GAS SAMPLE VOLUME (Ca ft)	GAS METI IN (T) (OF) (OI)	ER TEMP (G OUT (R) (OF)	SAMPLE BOX TEMP (°F)	i i
TRAVERSE SAMPLING POINT THE (min) 1 A 0 (10.5) 2 5 16 4 15 5 16 5 16 1 B 30	3 3 4 8	VELOCITY HEAD (Vp)	ORIFICE OIFF. PRESS. (H)	GAS SAMPLE VOLUME (CD ft)	GAS METI	ER TEMP (G OUT (m) (0F)	SAMPLE BOX TEMP (9F)	IMPINGER OUTLET TEMP (PP)
POINT TIME NUMBER (min) A 0 (16.5) A 2 (16.5) A 2 (16.5) A 3 (16.5) A 3 (16.5) A 4 (15.5) A 5 (16.5) A 5 (16.5) A 6 (16.5) A 7 (16.5) A 7 (16.5) A 8	(oF) 3 3 5 3 48	(Vp)	OIFF. PRESS. (H)	SAMPLE VOLUME (cu ft)			BOX TENP (OF)	OUTLET TEMP (PF)
24 0 (244) 0 A 24 24 24 24 24 24 24 24 24 24 24 24 24	335	550.0	9.75	30 8 414	++	4	(45)	2.7
7 7 9 9 7 7 7 9 9	3 48		6.0		1	Š	377	
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.065	××	45 110	ナファ	6	155	**
7 98 9 37 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	388	0.075	0.47	4 - 4	0.5	4.3	254	3.7
26 3.0 2.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	613	9.11	047	34.410	15	44	351	3.1
30 30 3	412	4.11	1.39	14 610	2.5	44	154	3 9
3.0	408	0.10	747	24.460	3.5	74	197	34
3.6				328 378				
3.0			1				,	
٠,	4.78	0.06	0.87	075.520	4 2	40	215	35
	350	0.07	4 - 1	028 0	5.3	7 7	4.50	3 6
	×13.	0.077	7 7 7	633 46	55	3	37.5	2.9
	4/3	0.095	0.1	0 3 6. 80	1.5	11	157	46
6.5 55 6.0	1,1	000	1.17	0 3 9, 67	23	87	() ~	/*
9.9				042.506				
	T = 376	Ves 75 = 85158	AH=1.14		0.4	37		
			4,1	1.4 L. 1.4.	6.5			
				23, 077 ET				
(10)	- stated in 1	etween Port	hules to	adjust uml	umlifical cord	P		
	F. tut Icak	heelt and su	umpling frein	n leak chick	(+ 1, 2, 2, 1	1 - "K		

VISIBLE EMISSION OBSERVATION FORM

	Run #1
No.	The state of the s

Grisian AFB - 1	32:les # 3	- Hestin Phut	Case	PATION	199	o o	START	TIME	END TIME
STREET ADDRESS Bldg 223	7011-1 77 -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SEC	0	15	30	45		COMMENTS
2104 22)			1	25	15	15	20		
CITY	STATE	ZIP	2	15	25	20	25		
Grision AFB	IN	46971	3	20	80	80"	80	500	+ blow
PHONE (KEY CONTACT)	SOURCE ID NUM	HEA	4	20	20	20	15		
PROCESS EQUIPMENT	OP	ERATING MODE	5	15	10	10	ح		
Boiler #3		95-100%	6	15	15	10	5		
CONTROL ECCUPMENT. By - PASS - NOME	I OP	ERATING MODE	7	15	10	10	15		
CESCRIBE EMISSION POINT			8		15	20			
Stool Stack - 60	" dianeta	,	9	20			25		
			—	20	20	30	20		
HEIGHT ABOVE GACUNO LEVEL	HEIGHT RELATIV	E TO OBSERVER	10	10	15	20	15		
100 ft	Sian 100++		"	5	5	10	15		
DISTANCE FROM OBSERVER Stor fo' End	DIRECTION FROM	M OBSERVER	12	15	10	15	15		
DESCRIBE EMISSIONS	1 3.81 70 W		13	20	20	25	30		
	End Lotting		14	25	25	10	30		
	ł	I	15	30	30	25	25-		
POINT IN THE PLUME AT WHICH OPACE	Attached D	Detached G	16	30	30	25	30		
Start 3	End /		17	25	10	15	10		
DESCRIBE PLUME BACKGROUND			18		10				
Stan Signeds	End		19	10		10	15		
BACKGROUND COLOR Start 6/4y End	SKY CONDITIONS	End /	20	10	20	15	15		
MIND COCCO	WIND DIRECTION			10	10	20	20		
SIAN G MAND END	Start 270°	End 270'	21	10	20	15	15-		
Stan 34°F End 34°F	WET BULB TEMP		22	15	15	15	10		
			23	10	10	10	10		
Shor with CE Prume	COUT SKETCH	Draw North Arrow	24	10	10	10	10		
Sun 💠	0		25	10	15	15	20		
Wind —	0		26	20		20			
()	Emission Point		27	30	35	30	20		 -
		_	26	30	30		25		
0			29			25			
0			 	20	20	25	20		
i i		——————————————————————————————————————	30	20	15	10	15		
	Observer's Posit	/	1 <i>(</i>	BVER'S I AMOA	AME (PF		tron		
	SUSAN A S POSITI	ion			HGNATU!		7	··	DATE
	w y			and	16	20	3		6 Occ 19
Sun Loca	tion Line		UNGA	MIZATION USA	F 0	EHL			
ADDITIONAL INFORMATION			CERT	FIED BY			4 , .	, /	DATE
		55	1 7	CKAS	Air	Cont	ral B	vard	Į

	AIR POI	LUTION P	ARTICU	LATE ANA	LYTICAL	LDATA	
BASE		DATE				RUN NUMBER	
GT: SSON	n AFB	6	Dec	90		Run	# [
BUILDING NUMBER				SOURCE NI	MBER		
					Boile	<u>er 3</u>	
1.			PARTICI		1 100	IAL WEIGHT	WEIGHT PARTICLES
	ITEM		FINAL W		1811	(#m)	(gm)
FILTER NUMBER			,5290	<u> </u>	0.	2873	0.2419
ACETONE WASHII Hell Filter)	NGS (Probe, Front	16	5.62	85	104.	1343	1.5042
BACK HALF (if ne	seded)						Ø
			Total We	ight of Partic	ulates Coli	ected	1.7461 **
II.			WAT		<u> </u>		
	ITEM		FINAL W		INIT	IAL WEIGHT	WEIGHT WATER (gm)
IMPINGER 1 (H20)			≥ 10 ±	ml	2	oo ml	10
IMPINGER 2 (H20)	<u></u> <u></u>		٦18	m l	۔	ouml	18
IMPINGER 3 (Dry)			1	ml		o ml	1
IMPINGER 4 (Silica	ı Gel)	į	200	1.	٦.	00	4.6
			Total We	ight of Water	Collected		2 8, 6 em
111.		-	GASES	 			
iTEM	ANALYSIS 1	ANAL 2		ANAL	.YSIS 3	ANALYSIS 4	AVERAGE
VOL % COZ	7.6 %	7.8	%	7. 8	3 %		7.8 %
VOL % 02	11.8%	اک.ه	%	12.	• %		12.0%
VOL % CO					_		
VOL 7 N2							
		Vel % N2 =	(100% - % (CO ₂ . % O ₂ .	% CO)		
DENL FORM 20			56			· 	

				PARTICULATE	ATE SAM	SAMPLING DATA SHEET	SHEET					
		Trans.	THE RESERVE AND THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IN COLUMN									
N NOK			IL OT SIACE CR	COSS SECTIO		EQUATIONS			_	AMBIENT TEMP	TEMP	
R 24	n # 1				-	0 = 0 F + 460						3.9 OF
DATE									Γ΄	STATION PRESS		
-4	76 70	<u></u>		,		_	7	Ę			2.9 101	in Hø
PLANT		- "		Aster		-	్రి	<mark>ار</mark> م	IT.	HEATER	L	
Heating Pant		ار ان در	(<u>خ</u> د			ָר ה ר נ	7				90
BASE		_	_)		FX f. tol	Fre fital leak check - OK	2	<u> </u>	PROBE H	PROBE HEATER SETTING	
6 Y SS 6.74	MAFR		_		-	ave train	and items to the charter (15 to No.)	()	بد			_
SAMPLE BOX'A	UMBER	 [*				المالة والداء		<u> </u>	PROBE LENGTH	ENGTH	
)									FŦ
METER BOX NUMBER	MAFR	T	چ. ت			4.0 +.40	Don't out that look , they the	14	_1.		9	
A . + a . L	; ‡					To Land	ו ושנור כ ינכל	<u>ا</u>		NOZZLE	NOZZLE AREA (44) % 1.4	. 5
0/NO m	7 # 7					71.4 +2	PIST Train 100K chark (1211/4) - of	K (N. J. H.		c	A. 3	3 5/0 000
,		7								<u>-</u>		-
3		T			<u>-</u>				L		9.84	
}										DRY GAS	DRY GAS FRACTION (FG)	_
TRAVERSE	SAMPLING	MTATIC	STACK TEMP	\vdash	0C1TY	ORIFICE	GAS	GAS METER	ETER TEMP		SAMPLE	IMPINGER
	TIME	PRECSURE	_		HEAD	OIFF.	SAMPLE	Z	-	Puo	X OB	OUTLET
	(uiii)	(in H9D) '/A/	(or) (oR)		(Vp)	(H)	VOLUME (2u ft)	(o.F.)	(SE)	(oF)	16#P (0F)	TEMP (OF)
A	2021 0	4.1	057	0,	3.04	3.42	771 EH0	ተተ	7	43	377	3.6
4	2	2.7	350	4	P.07	94.0	15.540	4.2	7	ナス) \$ 7	×
7	10	~	383	-	5470	6.47	01 7 70	1.5	-	5	7 4 3	7.
3	15	۲	415	0	6 0 0	1.19	30.050	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	4 5	7 43	5 *
5	7,	4.7	4/6	מ	ı, 11	1.38	<u>ለተ የ5 "</u>	5.5		43	2 7 4	3.6
-9	75	7	4 (3	9	0 163	1.36		13	د	3	252	/ 5
	36						184 650					
9	34	1	135	3.	0 35	0.65	054,430	47	3	7 7	2 43	3 8
7	38	5.5	230	٥	0.075	1.20	061.57	7.5	-	87	757	34
~	7,7	1-1	34.7	٥	0.07	1.00	6 4 4 4 9	33		48	265	14
7	7,	4	237	9	0.692	1 18	06709	2.5		49	877	4
4	2.5		7)7	9	580.0	1.03	44.60	2.5		49	253	ナナ
4	55	7.7	773	1	683	1.06	ત	2.5		* t	7 5.4	t ~ 1
	7,7						0 75, 408					
			T. = 348			41 = 1.67			7 1 5			
				75.7	7 8 65 7	1					,	
						1.1	11.12 43 3 84.0	6 5.43				
								1	-			
				+								
1	1									_		
OEML	80									Ì		

VISIBLE EMISSION OBSERVATION FORM

No. Run # 2

COMPANY NAME	1 0)	/		AVATION			START		END TIME
Grisson AFB - Heat	ing fla	n+		Dec	199	0	/:	546	
•	•		SEC	0	15	30	45	İ	COMMENTS
Bldg 223			MIN						
			1	15	30	30	35		
CITY	STATE	ZIP	2	30	25	25	25		
Grissom AFB	IN		3	20	20	20"	20		
PHONE (KEY CONTACT)	SOURCE ID	NUMBER	4	25	25	25.			
PROCESS EQUIPMENT		OPERATING MODE	5	15	15-	20	25		
So, les #3		95 % OPERATING MODE	6		1				
CONTROL EQUIPMENT		OPERATING MODE	-	20	25	30	10		
Nav			7	35	35	20	15		
CESCRIBE EMISSION POINT	,	4	8	10	10	10	15		
Steel Stack - 66"	in Ala	mple,	9	15	20	20	25		
			10	25	25				
HEIGHT ABOVE GROUND LEVEL		ATIVE TO OBSERVER	11	25			30		
DISTANCE FROM OBSERVER		FROM OBSERVER	12						
Start 75' End -		End /		35	30	35			
DESCRIBE EMISSIONS			13	30	30	20		<u> </u>	
sian lofting	End /		14	20	25	35	40		
EMISSION COLOR		ROPLET PLUME	15	40	40	40	35		
Start Brown End /	Attached C	Detached G	16	40	30	25	35		
	End 4		17	35	30	40	40		
DESCRIBE PLUME BACKGROUND			18						
Stan Clouds	End /		-	30	25	30			
BACKGROUND COLOR	SKY CONDIT		19	25	30	20	20		
Start Gray End V	Start OVC	End V	20	20	20	25	20		
Star 5 Last End /	Start 32		21	25	20	15-	20		
AMBIENT TEMP	WET BULB T	EMP RH, percent	22	30	30	25	25		
Start 36°F End	32°F		23	20	25	30	35		
Stack with SOURCE LAY	CUI SKEICH	Draw North Arrow	24	40	35	40	45		
Sun 💠			25	40	40	40	35		
Wind _			26	35	30	40	35		
(x	Emission F	Point	27	35	30	30	15		**************************************
7	~ \ <u> </u>		28	20	15	20	15		
•	<i></i>		29		15				
	100		30	15		10	15		
			<u></u>	15	20	25	30		
		Province (1)	1 1	RYTER'S A	71		tron		
1700	Observer's F	noilieo,		AMON AVER'S S			1100		DATE
1700		Cosition (1)	K	un l	1	Le	Z/Z		6 Dec 145
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>X</b> — <b>X</b> $\mu$			NIZATION					
Sun Loose	on Line			FOEX					DATE
ADDITIONAL INFORMATION		58	1	FIED BY	Dir	Conti	of B	sul	DATE

	AIR POLI	UTIC	N PARTICUL	ATE ANA	LYTICAL	DATA		
BASE		DATE			<del></del>	RUN NUMBER		
GY: SSOM	AFB		6 Dec	90		Run	# :	<u> </u>
BUILDING NUMBER				SOURCE NU	MBER			
					Boil	er 3		
1.			PARTICU	LATES				
ľ	TEM		FINAL WE (gm)		INITI	AL WEIGHT	W	EIGHT PARTICLES
FILTER NUMBER			.4578		0.	2893		0.1685
ACETONE WASHINGS Helf Piliter)	(Probe, Front		98.697	"	98.	75-96	C	0.1375
BACK HALF (if neede	d)							Ø
			Total We	ight of Partic	ulates Colle	eted		0.3060 em
11.			WATE	ER	<del></del>			
ı·	TEM		FINAL WE		INIT	AL WEIGHT		WEIGHT WATER
IMPINGER 1 (H20)			<u>18</u>	m(	٦	00 m(		13
IMPINGER 2 (H20)			2 { 0	m(	2	00 ml		10
IMPINGER 3 (Diy)			1	m\		0 m(		ı
IMPINGER 4 (Silica Ge	ot)		۷ 0 9	. 0	2	00		9
			Total We	ight of Water	Collected			30 gan
m.	,	,	GASES	(Dry)				
ITEM	ANALYSIS 1		ANALYSIS 2	ANAI	YSIS 3	ANALYSIS 4		AVERAGE
VOL % CO2	5.8%	4	5.6 %	5.4	°/, ★	5.7%		<i>5</i> .7 %.
VOL % 02	14.4%	ı	4.6%	14.6		14.4%		14.5%
VOL % CO								
VOL % N ₂								
* not included	in average	V ₀   9	i N ₂ = (100% - %	CO2 - % O2 .	% CO)			

					PAR	FICULATE SA	PARTICULATE SAMPLING DATA SHEET	SHEET					
The control of the	in .		SCHEM	KTIC OF STAC	K CROSS	SECTION	EQUATIONS				AMBIEN	T TEMP	
	- 1	*	_				OR = OF + 46(	•					
		06 70							1		STATIO	2	
Pro First   1   1   1   1   1   1   1   1   1	PLANT	+ 70	·ler		7.4	<u>.</u>	1		Ts. Vp		HEATER	.ŧ	
Priston AEB	BASE	LIM	_		30		pre pitot	look check	10K		PROBE	HEATER SETTIN	
Part Box Number   Part Box Number   Part Control Con	55 'X-4)	in AFB			U.		pre trais	, leak chark	(15 in Hg.	)- or			<u>,</u>
Part Fork Number   Part Fork   Part Fork   Part Fork   Part Part   Part Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part	SAMPLE BOX R			$\Big)$	<						PROBE		
Comparison of the comparison o	METER BOX NU	MBER		ų U			Post pite	t leak check	Y'S		NOZZLI	L	İ
A	0w/0m	1	7				post tra	in leak check	H ~!(1) >	3)- CK	ථ	6.38	
TRAVERSE SAMPLE OF STACK TEMP VELOCITY ORIFICE SAMPLE IN AND PROST (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 1 2.87 (CAT) 1 2.87 (CAT) 1 2.87 (CAT) 1 2.87 (CAT) 1 2.87 (CAT) 1 2.87 (CAT) 1 2.87 (CAT) 1 2.87 (CAT) 1 2.87 (CAT) 1 2.87 (CAT) 1 2.87 (CAT	<b>ರೆ</b>										DRY GA	0.84 S FRACTION (Fd)	
Time   Pergsune   (oF)   (Te)   (UF)   ONES.   SAMPLE   W   (WP)   (OF)   (OF	TRAVERSE	SAMPLING	ETATIC		TEMP	VELOCITY	ORIFICE	GAS	GAS	WETER TE	٩	SAMPLE	GEORIGAL
\$ 0 (17.1)   2449   0.045   0.94   0.045   144   444   144   1.24   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.53   1.54   1.53   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54   1.54	POINT NUMBER	TIME (min)	In 420)	(oF)	(Ts) (0R)	HEAD (Vp)	DIFF. PRESS. (H)	SAMPLE VOLUME (cu ft)	N. (O.F.)	AVG (Tm) (B)	OUT (OF)	BOX TEMP (OF)	OUTLET TEMP
8 34	A	- 1		246		0.04	Ú, f. 2.	375, 705	カナ		7	4 2 4	7
8 30 2.1 410 0 1.1 28 0 88.7 45 45 45 1.0 1.0 1.3 4 0.8 1.8 1.8 1.0 1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4	4		7.83		0.065	0.96	077,81	47		4	1 43	3.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	a l	1 8	375		-	0.48	080,26	3		45	1.53	3.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ر پار	-15	2 (	400		0 10	1.28	- 1	5.3		£	246	3.7
8 36 2.4 4 2 374 495 10.4 0.41 0.41.815 49 47 2.5 3.5 3.5 3.5 3.6 4.7 3.6 4.7 3.6 4.7 3.6 4.7 3.6 4.7 3.6 4.7 3.6 4.7 3.6 4.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	7	3.	4.5	2,5			1.38	J	550		71	157	35
11		30	<b>H</b>	+		6.11	1, 31	8 9	3		3	097	74
8 3 4 5 5 7 7 7 8 8 9 1 7 9 1 1 7 8 8 9 1 7 7 8 8 9 1 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8								1		-			
35 44 44 52 10 43 44 44 52 44 44 52 44 44 52 44 44 52 44 44 52 44 44 52 44 44 52 52 52 44 44 52 54 44 72 50 44 44 52 44 72 60 44 44 52 44 72 60 44 44 52 52 52 44 72 70 10 10 10 10 10 10 10 10 10 10 10 10 10	8	36	7.7	7.8		0,0	17.0	91.	44		47	2 بالا ح	38
45 50 60 60 50 50 50 50 60 60 50 60 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	4	35	#	757		0.68	7.4	4 3	2.5		48	147	3.8
50 5 5 448 6 048 115 0 049 49 57 44 243  50 6 6 8 1,0 2 10 57 49 49 49 49 49 49 49 49 49 49 49 49 49	1	7,5	7.5	+374+		0.495	1.75	2	25		44	239	44
55 55 448 0 0.48 102. 10 57 44 24 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, (	٢	7	1,12		0 0 0	115	-	5,		1.9	2.38	47
$7_c = 339$ $1.0 \pm 10.1$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.7$ $10.$		200	440	4/3		0,485	1. 11.8	- j.	57		+	143	43
= 339 VP375 = 7.8831 THE 1.06 THE 32,1106	3	0 9	5.5	XX T			10	7,	57		44	7 7	4,4
V Ps 75 = 7 88 31.  Total Val = 32, 1100				n.			- 1	-1		11	-		
Tytal Ka					ر ا	11							
							Tutal Va	10					



# VISIBLE EMISSION OBSERVATION FORM

No. Rus #3

COMPANY NAME	,	ı /	,		Dec		2	SIAHI		END TIME
COMPANY NAME  GY:SSOM AFD - He  STREET ADDRESS	Ating Pi	4nt	·	SEC	T	T	Τ	17	<del>′′</del>	1541
Bly 22)				Alin	0	15	30	45		COMMENTS
					30	30	30	35	ļ	<del></del>
CITY	STATE		ZIP	2	40	35	40	40		
Grisson AFD PHONE (KEY CONTACT)	SOURCE ID		46971	3	30	10	30"	25-		
PROVE NET CONTINUITY				4	20	20	15	15		
PROCESS EQUIPMENT			ATING MODE	5	15	10	25-	30		
Boile #3			95 % ATING MODE	6	30	25-	30	35		
None		OF ET	Affilia mode	7	35-	25	25	7;-		
DESCRIBE EMISSION POINT		·		8	30	25	30			
Stool Stack - 4	16 10 1	land	<i>t</i> 25	9	20	20	20	20		
				10		20	15	2:5		
HEIGHT ABOVE GROUND LEVEL	HEIGHT REL	ATIVE	O DESERVER	11	20					<del></del>
DISTANCE FROM OBSERVER	Start 100			12	40	20	/y-			
Start 75' End	Start N			ļ	25-	25				
DESCRIBE EMISSIONS				13	20	20	20			<del></del>
son lofting	End			14	10	5	5	<u></u>		
	IF WATER DE		1	15	5	5	5	10		
Start Brown End / POINT IN THE PLUME AT WHICH OPACE	TY WAS DETE	AMINÉ	) Detaction (	16	15	10	15	20		
Start 3 /	End			17	20	20	20	20		
DESCRIBE PLUME BACKGROUND				18	20	20	20	15		
Start Clouds BACKGROUND COLOR	End /			19	20	نر2	15	15		
	Start O.JC		End 🗸	20	10	5-	5	10	<del></del>	
SIAN GYAM END	WIND DIREC	TION	į	21	i i	10	10			
Start End AMBIENT TEMP	Start WET BULB TO		End PH, percent	22	5	•		10		<del></del>
Start End					15		20	25	!	
STICK SOURCE LAY	CUT SKETCH		Draw North Arrow	23	10	70	35	40		
Plume (				24	95	40	35-	30		
Sun 💠			<u> </u>	25	35	25	15	10		
				26	10	10	10	5		
(y	Emission P	Point		27	15-	15	10	15		
(	/ /		}	28	15	20	20	20		
	17		1	29	15	10	5-	<i>-</i>	<u>-</u>	
				30	15-	15	15	20		
	in K	`/		OBSE	VER'S N					
	Observer's F	Sind A	J'	K	AMOU	A.	CINT	run		
You a			/	OBSE	VER'S S	GNATUE		7		G DEC 192
A CINE IN		<b>/</b>	_	ORGA	MIZATION	cre	2	<del>-</del>		100-2199
Sun bocat	on Line	<u> </u>			DEHL			<del></del>	<del></del>	
ADDITIONAL INFORMATION			61	CERTIF	TED BY	2	entral	Ross	1	DATE
				1 /5/	(7) /	س ا	gan i 194	1/020	•	•

	AIR POL	LUTION PARTICU	LATE ANA	LYTICAL		
BASE		DATE			RUN NUMBER	
Grissom	L	6 186			Run	#3
BUILDING NUMBER			SOURCE NU	MBER		
				Boile	er 3	
1.		PARTICI FINAL W		INIT	IAL WEIGHT	WEIGHT PARTICLES
	1TEM	(gm			(gm)	(gm)
FILTER NUMBER		, 4443		0.	1942	0.1500
ACETONE WASHING Half Filter)	S (Probe, Front	93,734	<u>ي</u>	93.	6290	0,1052
BACK HALF (if need	ded)					Ø
		Total We	eight of Partic	ulates Coll	ected	0.3552 am
н.		WAT				
	ITEM	FINAL W		INIT	IAL WEIGHT (gm)	WEIGHT WATER (4m)
IMPINGER 1 (#20)		2 i8	ml	2.	oo ml	18 ml
IMPINGER 2 (H20)		208	ml	2.	ooml	8 m
IMPINGER 3 (Day)		1 )	4(		o ml	1 m!
IMPINGER 4 (Silice G	del)	<b>5</b> 11.4	<b>-</b>	٤	00	11.4
•		Total We	ight of Water	Collected		38.4 sm
n.		GASES	(Dry)			
ITEM	ANALYSIS	ANALYSIS 2	ANAL	YSIS 3	ANALYSIS 4	AVERAGE
VOL % CO2	5.0 %	5.1%	4.	9 %		5.0 %
VOL % 0 ₂	15.6 %	15.7 %	15.7	%		15.7 %
VOL % CO						
VOL % N2						
		Vel % N ₂ = (100% - %	co ₂ - % o ₂ .	% CO)	<u> </u>	
DEHL FORM 20		62				<del></del>

APPENDIX H
Boiler 4 Field Data

	PRELIMINARY SURVE (Velocity and Tem	Y DATA SHEET NO. 2 aperature Traverse)	
BASE		DATE 7 h 276	
LY SSUIN AF	D	7 pec 90	
INSIDE STACK DIAMETER			· · · · · · · · · · · · · · · · · · ·
Ĺ.	6		Inches
I STATION PRESSURE			
STACK STATIC PRESSURE	265	· <u>- · · · · · · · · · · · · · · · · · ·</u>	In Hg
SAMPLING TEAM	0.138		In H20
	<b>7</b>		
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	√ V _p	STACK TEMPERATURE (0F)
	0.040		155
7	0,095		315
3	0.163		344
4	0.102	· · · · · · · · · · · · · · · · · · ·	341
5	0,035		3 38
ь	0.036		332
	F/5 = 19.6		元=304
	FTM = 1176		
	FIM - 1116		
		Ø=0,¥±3;	
			·
EMI FORM 14	AVERAGE		

				ľ	TICULATE SA	PARTICULATE SAMPLING DATA SHEET	SHEET				
RUN NUMBER	•	SCHEN	SCHEMATIC OF STACE	ACK CROSS SECTION	SECTION	EQUATIONS			AMBIE	AMBIENT TEMP	
	-					0 = 0 = 460	-			5	ů O
DATE						- I	1		STATIC	STATION PRESS	
2 INVIA	Dec 40	Ţ.		Meter Bex	96,	H = 5130	2 V.a.	Tm. Vo		او	O in Hg
	Heating Mit	5.5×	(	<u> </u>	-		ົ ຕຸ		HEATE	HEATER BOX TEMP	
BASE	1477 6	<del>,</del>	_	¥	-	チュン	1.10 L Wick -	が が	PROBE	PROBE HEATER SETTING	P. OF
(- 1°;	GF; 556.47			a_	_	pre tru	Pre trus chick (1500/4) - ok	5.0.74 ) - 0			•
SAMPLE BOX NUMBER	UMBER			\		•	,			PROBE LENGTH	1
METER BOX NUMBER	UMBER	T	ב ב			pt: + 1	r. fet chick	, ,	NOZZI	NOZZLE AREA (NA dia	. E
-0/:=0						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to st to an it at live in the			0	=======================================
							) Y > C + C + C + C + C + C + C + C + C + C	12 14 H3)-1	do //	4	
<b>ತ</b>		<u> </u>							DRY G	DRY GAS FRACTION (Fd)	
TRAVERSE	SAMPLING	MATIC	STACK T	KTEMP	VELOCITY	ORIFICE	GAS	GAS METER	TEMP	SAMPLE	01071071
POINT	TIME (min)	PRESCURE (in H20)	(0F)	(Ts)	HEAD (Vp)	DIFF.	SAMPLE	IN AVG	DOUT	BOX	OUTLET
V -	2000	7	9 9 1			-	€ ′	+	의' 구	(OF)	(OF)
	١.	-	750		0.06%	0.5	1 0 X 0 15	2 -	2 3	577	7
*	10	~	343		0 075	ብ '	1	16	1	1 40	13.7
<b>†</b>	-51	}	\$ 13			1.13	15.3	5, 8	1.	25.4	
\ \	77	٦,	756		0.078	1.03	91811	3.5	32,	377	3.9
9	54	~	3 /4		0.0.70	0.92	9	2.2	20	137	3 8
	3		-				123375		1		
	36	~	80		0.030	0 17	123 375	671	77		0 0
	35	74			0.010	1.10	12567	うと	120	1	2 %
2	140		- 1		080.0	11.1	128.33	45	675	8€ ₹	
<b>,</b>	277	4	75			(1)	7	اه:	49	1	0 +
ń	25	~			0.00		53.42	2	200	2 3%	44
	0 7				7000		139 505	2.0	2	141	48
					1515-73+27						
			75 = 30			TO 1 = 10		= 4/	75 =		
				•		101	15 11/1/10	(10 (17	1	-	
									1		
OEHL FORM	18										



COMPANY NAME

### VISIBLE EMISSION OBSERVATION FORM

ADDOESE	16171	<u> </u>	
Grissom AFU STREET ADDRESS Bldg 223			
NIVY LES			
	<del></del>		
CITY	STATE		ZIP
CYLSSOM AFS PHONE (KEY CONTACT)	SOURCE ID	MINAGE	4697/
FROME (NET COMINGI)	SOUNCE IU	110mbc	••
PROCESS EQUIPMENT		LOSSA	ATING MODE
		0	
Boiler #4	<del></del>	OPER	ATING MODE
Nav		<u> </u>	
DESCRIBE EMISSION POINT	1 ,		<del></del>
Stack Stack 66"	chamete.		
HEIGHT ABOVE GROUND LEVEL	HEIGHT REL	ATIVE T	O OBSERVER
100'	Start 100	<u>′                                     </u>	End
DISTANCE FROM OBSERVER	DIRECTION		
Sran 150' End	Start NW		End /
DESCRIBE EMISSIONS		21.	
Stan / O The EMISSION COLOR	End Jof	ACRI ET	PHIME
Start 610WW End /	Attached		
POINT IN THE PLUME AT WHICH OPA	CITY WAS DETE	AMINEC	)
Start 51	End /		
DESCRIBE PLUME BACKGROUND			
Stan blue sky (No Cloady BACKGROUND COLOR	End /		·
BACKGROUND CÓLOŘ	SKY CONDIT		
Start b/w End	Stan Clen		End
Transcript below			End /
Start 2 Kuls End -	Start 2 9	7	
Stan 2 Kuli, End	Start 2 90	EMP	RH, percent
Start 2 Kell, End — AMBIENT TEMP Start 33 F End —	Start 2 90 WET BULB T	EMP F	PH, percent
Start 33°F End -	Start 2 90 WET BULB T 32 "		
Start 33 F End SOURCE U			
Start 33°F End -			
Start 33 F End SOURCE U			
Start 33 F End SOURCE U	AYOUT SKETCH		
Start 33 F End SOURCE U			
Start 33 F End SOURCE U	AYOUT SKETCH		
Start 33 F End SOURCE U	AYOUT SKETCH		
Start 33 F End SOURCE U	AYOUT SKETCH		PH, percent 92 %  Draw North Arro
Start 33 F End SOURCE U	AYOUT SKETCH		
Start 33 F End SOURCE U	X Emission I		
Start 33 F End SOURCE U	X Emission &		Draw North Arro
Start 33 F End SOURCE U	X Emission &	Point	Draw North Arro
Start 33 F End SOURCE U	X Emission &	Point	Draw North Arro
Start 33 F End SOURCE U	X Emission &	Point	Draw North Arro
Start 33 F End SOURCE U	X Emission I	Point	Draw North Arro

Grissom AFO- Heating Plant

	AIR POL	LUTIO	N PARTICUL	ATE ANA	LYTICAL	DATA	1
BASE		DATE	·· · · · · · · · · · · · · · · · · · ·			RUN NUMBER	
la A	I Z	10	Dec 70	)		# 1	) !
BUILDING NUMBER	† D			SOURCE NU	MBER	<del></del>	<del></del>
				į	30, ler	. 4	
1.			PARTICU	LATES			
	ITEM		FINAL WI		INIT	IAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER			0. 410	7	, a	1893	0.3214
ACETONE WASHING Hall Filter)	5 (Probe, Front		joo. 2	181	/00	. 0550	0,1631
BACK HALF (if need	(ed)						Ø
				ight of Partic	culates Colle	ected	0,4845 am
11.		- 1	WAT	ER		<del></del>	
	ITEM		FINAL WI		INIT	IAL WEIGHT (gm)	WEIGHT WATER (&m)
IMPINGER 1 (H20)			22	6 ml	د	- 00 ml	26
IMPINGER 2 (H20)			2 0	8 ml	د	-00 ml	8
IMPINGER 3 (Dry)			<del>2 0</del>	1 ml	7	-00 ml	1
IMPINGER 4 (Silica G	(el)	2 08 2 00 9  Total Weight of Water Collected  GASES (Dry)	- 00 9	8			
				43 <b>e</b> m			
ш.	<del></del>	Total Weight of Water Collected  GASES (Dry)  ANALYSIS ANALYSIS ANAL		Y			
ITEM	ANALYSIS 1		ANALYSIS 2	ANAI	LYSIS 3	ANALYSIS 4	AVERAGE
VOL % CO ₂	8.6%	1 8	2.7%	8.	7%		8.7%
VOL % 02	11.0%	11	.0%	11.0	%		11.0%
VOL % CO							
VOL % N ₂							
		Vel %	H ₂ = (100% - %	co ₂ . % o ₂ .	% CO)		

DATE  DATE  10 D26 46  PLANT  LULIMY FLINT  SAMPLE BOX NUMBER  OW/OM  TRAVERSE SAMPLING  POINT  TIME  POINT  TIME  MITCH PROSE  THAVERSE SAMPLING	SCHEMATIC OF STACK CROSS SECTION  A dir  A  L  B  A	OSS SECTION	PQUATIONS OR = OF + 460			AMBI	AMBIENT TEMP	
Lating plant Box Humber Lyissem AFB BOX HUMBER ERSE SAMPLING TIME TIME TIME TO 1025 S. S. S. S. S. S. S. S. S. S. S. S. S. S			OR = OF + 46					
Lating Ment & Cating Ment Box NUMBER  BOX NUMBER  TIME (min)  10 1025  10 10				0			>3	q o
POX NUMBER AFB BOX NUMBER BOX NUMBER TIME TIME (min) TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 TO 1025 T		•		2		<u> </u>	•	
BOX NUMBER BOX NUMBER TIME (min) 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10		Moet Car	# H		Ts. Vp	HEAT	ENP	o in Hg
BOX NUMBER  BOX NUMBER  TIME  TIME  TO 10.55  10.55		- <b></b>	Fre p. +	Pre pitot chock - ok	ル	PROBI	PROBE HEATER SETTING	OF VG
ERSE SAMPLING TIME (min)  10 10 10			r. 1r.	Pro train check (15:10 He.)	-(##/-) -	Ĭ,		
BOX NUMBER SAMPLING AT TIME (min)  10 10 10	j D						PROBE LENGTH	F
ERSE SAMPLING AT TIME (min) A D 1025 A 5 A 10 A 5 A 10			Post p:	Post pitot check - ok	。 不	NOZZ	NOZZLE AREA (A) JI (	<b>f</b>
RAVERSE SAMPLING POINT TIME NUMBER (min) 1 4 0 1025 2 5 10 2 5 10 3 10			post tr	post truin check (wintle)-OK	in 49)-0K	<u>o</u>		2.5 mark
SAMPLING TIME (min) 0 1025 5 10 10 15	7			,		L.	0.84	
SAMPLING TIME (min) 0 1025 5 10 10							AS PRACTION (FO	æ
(min) 0 1025 5 10 10 10	TIC STACK TEMP	$\vdash$	ORIFICE	GAS	GAS MET	GAS METER TEMP	SAMPLE	MOINGED
2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NO (OF) (TS)	R) HEAD R) (Vp)	PRESS.	SAMPLE VOLUME	I.)	AVG OUT	BOX	OUTLET
91		0.055	0.92	0	╁	+-	ベルト	E 15
10 1.	1	0.065	0.89	. 29	5.8	, i	07 7	77
04	7	0.065	0.88	08.7771	<i>ا</i> ر	24		27
77	+	-	0.88	$\dashv$	29	56		14
	}	Į.	97.0	78771	8	58		7
36	2,,,	0.045	0 6	٦	60	9	243	¢ 3
				154307				
5.1 3e d 1	100	8100	0 27	154 307	0		- 1	
75 1.8		270 0	772.0	-	9 9	,	1 7	##
44.	~	0.055	, ,	7.7	3 / 4	20	777	7 7
+	375	0.055		18	74	7,	7/1	4
M	37	0.050	0.68	~	14	7.4	7 7 7	17.7
5. 5	374	9	14.0	^		67		77
67.5			1 1	169 887			76.	4
						H		
	-		4 11 0.72		7	79=4		
			T.1.1.7	101= 30.087				
				1				



### VISIBLE EMISSION OBSERVATION FORM

No. two.

COMPANY NAME	11 1 01 1		HVATION		_	START	TIME END TIME
Grisson AFB-	Heating Plant		Dec	1990	?	10	55 1125
COMPANY NAME  Grisiam AFB-  STREET ADDRESS  Blog 273		MIN	•	15	30	45	COMMENTS
0.04		7	20	15	10	15	
ain.	STATE ZIP	2	20		T		
Grissom AFB	10 4697/	] 3	<del></del>	1	i	T	
PHONE (KEY CONTACT)	SOURCE ID NUMBER	11	20	20	1	25	
			20	20	15	10	
PROCESS EQUIPMENT	OPERATING MODE	5	5	10	10	15	
Soiler #4	OPERATING MODE	- 6	20	25	30	25	
Non		7	25	20	30	25	
DESCRIBE EMISSION POINT		7 0	20	25-	25	25	
Steal Stack - 66	· 0.4	9	20	15			
		10		5.	5		
HEIGHT ABOVE GACUND LEVEL	HEIGHT RELATIVE TO OBSERVER	11	10	_		5	
DISTANCE FACM OBSERVER	Start 100' End	<b>↓</b> }	5	5	5	5	
DISTANCE FROM OBSERVER SIDM / JU End	Start NW End	12	5	5	5	5	
DESCRIBE EMISSIONS		- 13 - 13	5	5	10	5	
Stan Joston ENISSION COLOR	Erd ~	14	10	10	10	5	
	IF WATER DROPLET PLUME	15	5	5	5=	5	
Start 670 May End / POINT IN THE PLUME AT WHICH OP		16	5	5	5	5	
Start 5 /	End -	17	5	5	5	5	
DESCRIBE PLUME BACKGROUND		7 18		5	0		
Stan Close 5 K., BACKGROUND COLOR	End /	19	0			0	
	SKY CONDITIONS Stan clear End	11-	0	5	0	5	!
Start 5/w End -	WIND DIRECTION	20	0	0	0	0	
Sian of Knot End	Start 03 O End	21	5	0	0	0	
AMBIENT TEMP	WET BULB TEMP PH, percent	22	0	.5	5	10	
Start 39 End	1 33 1 70 75	23	15	20	10	10	
with C	LAYOUT SKETCH Draw North Arrow	24	10	10	15	5	
Plume Sun 💠		25	5	5	-	0	
Wind -		26			<u> </u>	-	
		11	5	5	-5	5	
	X) Emission Point	27	5	5	5	0	
4/	1	28	5	0	0	5	
	·	29	0	0	5	5	
	1	30	5-	10	チ	10	
·	ماسا	OBSE	PVER'S N	IAME (P)	(TNY	<b>ラ</b> ノ	
	Observer's Position		Suga			into	
		OBSE	RVEA'S S	HGNATU!	//	4	DATE 10 De 19
<u>/</u>	140°		NIZATION				
3011	ocation Line		FOE				I pave
ADDITIONAL INFORMATION	69		PED DY	Air	0.1	1.	Some
	-3	1	VIA)	<u> </u>	( LAND	77	Part of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco

	AIR PO	LLUTK	ON PARTICUL	ATE ANA	LYTICAL	DATA		
BASE		DATE			T	RUN NUMBER	····	
birissom	AFR		10 Dec 9	90	ĺ	ヸ゚゚゚゚		
BUILDING NUMBER				SOURCE NU				
					Boiler	· 4		
1.			PARTICU FINAL WI			IAL WEIGHT	WEIGHT PA	DT161 54
	ITEM		(gm)		1811	(gm)	(gen,	
FILTER NUMBER			, 43	95	٠, ٦	884	0.1511	
ACETONE WASHIN Hall Filter)	IGS (Probe, Front		ioa.3	713	10 <b>2</b> .	3189	0.052	7
BACK HALF (if ne	eded)						Ø	
				ight of Partic	culates Colle	ected	0.2039	gm .
н.	<del> </del>		WAT					
	ITEM		FINAL W		INIT	IAL WEIGHT	WEIGHT	
IMPINGER 1 (H20)			77	4 m/	۲	-00 ml	2-4	<u>L</u>
IMPINGER 2 (H20)			20	4 ml	٦	- 00 m/	į	t
IMPINGER 3 (Dry)				o ml		0 m1	(	)
IMPINGER 4 (Silica	ı Gel)		١ ٥٤	1. 7	٤	. <b>0</b> 0	8.	7
_			Total We	Total Weight of Water Collected  GASES (Dry)  LLYSIS ANALYSIS ANAL			36.	7 🚛
101.		_				T		
ITEM	ANALYSIS 1	<u> </u>	ANALYSIS 2			ANALYSIS	AVE	RAGE
VOL % CO ₂	7.8%	7	.8%	7.8	%		7.	g %
VOL % 02	11.8%	1	1.8%	11.	7%		11.	8 %
VOL % CO								
VOL % N ₂								
<del></del>		Vel 9	LN ₂ = (100% - %	co ₂ . % o ₂ .	% CO)			
ORMI FORM 20			70					

			PAI	PARTICULATE SAMPLING DATA SHEET	MPLING DATA	SHEET				
NUN NUMBER DAYE	3 10 pec 94		SCHEMAYIC OF STACK CROSS	CK CROSS SECTION	RQUATIONS  OR = OF + 460  H = 5130-1	FG CP. A 2	Im . Vp	AMBIEN STATIO	الم اها	op 60 in Hg
	Plant Unner	As, ler	n.	7 7 7 0 0 0	pro file	Profibit check - oK Fre Irdin check (65 jh 140) · oK	oK nHo)-oK	PROBE PROBE	REATER BOX TEMP PROBE HEATER SETTING PROBE LENGTH	
METER BOX NUMBER QW/Qm	8 W		)- a		fost pi-	fost pitot check - ok post truin check (10 in Hg)-ok	ok in Hg) - ok	NOZZLI Cp	POZZLE AREA (A) 4:4. Cp 0.94 DRY GAS FRACTION (FG)	380 14
TRAVERSE POINT	SAMPLING TIME (Bin)	PRESSURE (in HW)	STACK TEMP (OF) (TS)	VELOCITY HEAD (Vp)	ORIFICE DIFF. PRESS.		GAS METER TEMP	EMP	SAMPLE BOX TEMP	IMPINGER OUTLET TENP
( A	1-1	1 "	14.7	8 700	(E)	+	(OF) (OR)	53 53	2.2.5	(4)
4 -	\$ 3	54	340	0.000	0.0	++	25	37,	7434	4 4
,,,		93	373	13	1.1	++	وو			im,
	33.0	~		668.0	0, 7/	185,132			237	7
4 7	33.0	1.5 08	80	0,02	17.0	5 781 581	2.5	35	197	4.6
~ 3	1 .t_		3.38	250.0	0 77	3/5/	7/2	100		797
14	5.5	1 1	380	0.055	6.74	13	و. ۸	28	25.6	48
	63.0	,	2.18	0.045	4	200.182	4	28	7 4.0	13
			<u> </u>	Pr = 6 0 3 3 4	15 0.71		1-1	88		
					200	10 06 = 1c4				
DEHL FORM	۵L									

COMPANY NAME	.1 .1	01 1		RVATION			START		END TIME
COMPANY NAME  Orissom AFB -  STREET ADDRESS	Heatin,	Plant		Dec	1990	<del>}</del>	13	11	1347
STREET ADDRESS	,		SEC	0	15	30	45		COMMENTS
0109			1	5	5	5	5		
CITY	STATE	ZIP	2	5	5	5	5		
Grisson AFD	IN		3	5	5-	5.	5		
PHONE (KEY CONTACT)	SOURCE ID	REBMUN	4	5	5	5	5		
PROCESS EQUIPMENT		OPERATING MODE	5	5	5-	5	5		
Boiler #4		•	6	5	5	5	0		
CONTROL ECUIPMENT . Name		OPERATING MODE	7	5	5	5	0		
CESCRIBE EMISSION POINT			8	0	5	0	0		·
Steel STACK			9	0	0	5-	0		
			10	0	5	0	5		······································
HEIGHT ABOVE GROUND LEVEL	,	ATIVE TO OBSERVER	11	5	5-	0	5		
100'	Start 100	End FROM OBSERVER	12	0	5	5	5-		<del></del>
Smr /50' End	Start	End	13	5	5	5	0		
DESCRIBE EMISSIONS			14	0	0	0	0		
SIAN /offing EMISSION COLOR	End IF WATER D	ROPLET PLUME	15	-	5	0	0	f	
Start Blown End	Attached 🗆		16	5	0	5	5		
POINT IN THE PLUME AT WHICH OPAC	End /	HMINED	17	5			5	<del> </del>	
DESCRIBE PLUME BACKGROUND			18		5	5	5		
Start 5 Kg BACKGROUND COLOR	End		19	5	<i>5</i> -	5		<del></del>	
•	SKY CONDIT		20	5		5	5-		
Start b/w End /	WIND DIREC		<del>                                     </del>	5	5	5	5	<del> </del>	
Start 5 Kital End -	Start 07		21	0	5-	5	0		
Start 48' End	34	53%	22	5	5	5-	0		
Stack SOURCE LA	YOUT SKETCH	Draw North Arrow	23	5-	5	0	5		
Plume	O	1 (2)	24	5	10	5	5	ļ	
Sun 🤏	$\bigcirc$		25	5	5	5	_5_	<u> </u>	
		<u>.'</u>	26	5	5	0	5		
	Emission I	Point .	27	5	0	0	0		
10/	<del>                                     </del>		28	5	y-	5-	0		
			29	5	5	5	5		
			30	5	5	5	5		
			11 7	RVER'S N	NAME (PF	"	<del>/</del>		
	Observer's	Position		AMON MYER'S S	J4.		Tron		DATE
	400			en l	L.	<u>d</u>	4		10 Dec 1996
Sun Los	tion Line	>	1 7	NIZATION	1	0	1+ 1	6.1	AFOEHL
ADDITIONAL INFORMATION		70	CERT	FIED BY	4		, ,	/	DATE
		72	11 /	Xar	Hir	Sheal.	7, H	ALCON TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	1

	AIR PO	LLUT	ION PARTIC	JLATE ANA	LYTICA		
91715500 Building number	n AFB	DATE	7 Pec	) D SOURCE N	JMBER	H 2	
					_	r 4	
1.			PARTIC	CULATES			
	ITEM			WEIGHT	INIT	FIAL WEIGHT (gm)	WEIGHT PARTICLES
FILTER NUMBER	•		, 431	0	ر ، ک	921	0.1389
ACETONE WASHI Half Filter)	NGS (Probe, Front		98.9	630	98	. 8535	0.1105
BACK HALF (If no	ee ded)						Ø
			Total V	feight of Partic	culates Col	lected	0.2494 am
II.			WA	TER			
	ITEM		FINAL V		INIT	TAL WEIGHT	WEIGHT WATER (gm)
IMPINGER 1 (H20)			2.3	-0 ml	د	-00 mi	7 0
IMPINGER 2 (H20)			2_	06 ml	2	- 00 ml	6
IMPINGER 3 (Dry)				D		0	0
IMPINGER 4 (Silica			٥ ـ د	8.5	7	• 0	8.5
			GASES (Diy)  ANALYSIS ANALYSIS ANALYSIS			34.5 am	
III.							
ITEM	ANALYSIS 1	GASES (Dry)  ALYSIS ANALYSIS ANALYSIS ANALYSIS		AVERAGE			
VOL % CO2	8.6%	8.	5%	8.5	%		8.5%
VOL * 0 ₂	11.2%	11.	1%	11. 2%	, <b>I</b>		11.2%
VOL % CO							
VOL % N ₂							
		Vol %	N ₂ = (100% - %	CO2 - % O2 - 1	% CO)		
OEHL FORM 20			73	<del></del>			

(This page left blank)

APPENDIX I
Boiler 5 Field Data

(This page left blank)

DATE			VEY DATA SHEET NO. 2 emperature Traverse)	
BOILER NUMBER   STACK DIAMETER   STACK DIAMETER   STACK DIAMETER   In Hg	BASE	1 50	DATE !! Ner GO	
INSIDE STACK DIAMETER  STATION PRESSURE $ \begin{array}{cccccccccccccccccccccccccccccccccc$	BOILER NUMBER		1 (1)(2 /0	
STATION PRESSURE $29.2/7$ STACK STATIC PRESSURE $-0.125$ SAMPLING TEAM  TRAVERSE POINT NUMBER VELOCITY HEAD, Vp in H20 $\sqrt{v_p}$ STACK TEMPERATURE (OF $-1.125$ ) $0.125$ $0.125$ $0.155$ $0.13$ $0.13$ $0.12$ F/S = 24  F/S = 1430	INSIDE STACK DIAMETER	5	<del></del>	
SAMPLING TEAM  TRAVERSE POINT NUMBER  VELOCITY HEAD, $V_p$ in H20  Vp  STACK TEMPERATURE (0F  1 145  2 9 3  0 125  2 9 3  4 2 4 5 0.14  5 0.13  2 9 6  2 7 1  FFS = 24  FFS = 1430	STATION PRESSURE			Inches
SAMPLING TEAM  TRAVERSE POINT NUMBER  VELOCITY HEAD, $V_p$ in H20  Vp  STACK TEMPERATURE (0F  1 145  2 9 3  0 125  2 9 3  4 2 4 5 0.14  5 0.13  2 9 6  2 7 1  FFR = 1430	STACK STATIC PRESSURE	17		In Hg
TRAVERSE POINT NUMBER VELOCITY HEAD, $V_p$ in H20  VP  STACK TEMPERATURE (OF  1 195  195  0.125  0.155  197  199  199  199  199  199  199		0.125		In H20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLING TEAM			·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	√ V _p	STACK TEMPERATURE (0F)
3 0, 155 $293$ 4 $6.1350.14$ 5 0. 13 $296$ 6 0. 12 $271$ $\overline{F75} = 24$ $\overline{T5} = 270$		0.12 0.10		195
$\frac{4}{5} = \frac{291}{286}$ $\frac{291}{286}$ $\frac{7}{5} = \frac{14}{5}$ $\frac{7}{5} = \frac{14}{5}$ $\frac{14}{5} = \frac{14}{5}$ $\frac{14}{5} = \frac{14}{5}$		0.125		287
$\frac{291}{5}$ 5 0.13 296 2.12 2.71 $\overline{F} = 24$ $\overline{F} = 1430$	3	0,155		293
$\overline{FFS} = 24$ $\overline{FFM} = 1430$ $2 71$ $\overline{FFM} = 1430$	4	c. 135 0.14		<u>&gt; 91</u>
$\overline{F}/S = 24$ $\overline{F}/M = 1430$	5	0, 13		296
FFM = 1430	Ł	0.12		271
FFM = 1430				
		F/5 = 24		T _s = 270
calculated mozelle d.a = 0, 3786	-	FFM = 1430		
		calculated needle dia	- 0 - 701	
			0,3/36	
<del></del>				
AVERAGE		AYERAGE		

			PAR	PARTICULATE SAMPLING DATA SHEET	MPLING DATA	SHEET				
RUN NUMBER		SCHEMA	SCHEMATIC OF STACK CROSS SECTION	SECTION	EQUATIONS			AMBIENT TEMP	TEMP	
i	1				"R = "F + 460			4	4	ri o
1 P	1 000 40	_			;	2			ON PRESS	
PLANT	41	1, 1,	Mate		Н = 5130.	Co Ts Vp	Vp	HEATER	1 5	SE UI
Heating 1741	11 2 1/hut		ā 1		Pro 11.4	Pro 174t chock - ok		PROBE	PROBE HEATER SETTING	qo S
(r,550m	SLIM AFB		) U∢		pre tr	pre train wheek (15:17Hm)- 1/	Hn)ード人			
SAMPLE BOX	NOMBER		)2"		. 1		,	PROBE LENGTH	ENGTH	fy o
METER BOX NUMBER	UMBER		e.		13 15pd	PUST PITOT CHACK - OK	J	NOZZLE	NOZZLE AREA (A) diq	
Qw/Qm		7			rosttvi	rost train chock (17 in Hg) - ok	H3)-1K	o o	0	मुक्त हर
3		T						DRY GAS	DRY GAS FRACTION (FD)	
i					static py	rressure = -0.125				
TRAVERSE	SAMPLING	MATIC	STACK TEMP	VELOCITY	ì		GAS METER TEMP	E E	SAMPLE	IMPINGER
NUMBER NUMBER	TIME (min)	PRESSURE (in Had)	(oF) (Ts) (oR)	HE AD (Vp)	PRESS.	SAMPLE IN VOLUME (OF)	S (I S	OUT (0F)	BOX TEMP	OUTLET TEMP
<b>∀</b>	5160 0	8-1	08/	0.11	1.87	F		E	777	37
7 4	5	۴	250	0,155	2.39	203.78 50		17	227	40
~	4	#,#	296	0,165	4	07.73 5		45	737	47
יצ	15,	2.7	307	٦	7. 2	17.77		47	2 24	5.3
٠ ٢٠	2.0	\$ · \$	3/0	41.0	1.73	2/5, 65 60	+	) e	7	1
d	2 2	0	3 2 2	6, 62	1.22	1/5.44			,	<b>,</b>
		ļ				1				
2	>0	5.1	80	0.065	1.34	1		55	٠,١	70
4,	14.	7 5	69	0 11	1.96	3 2 67		,5,1		1
, ,	3 3	2 6/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 / 6	7 .	337 40 66		2012	0077	44
٨	5.0	/3 5	30+	25/0	J,	36.93		Z is	2 /3	2,5
19	25.5	1.41	360	LI	3.16	07		5.4	1 1	55
	00					7 44, 897				
				15 = 4 4 10 5th			╅			
			15: 257		40 × = HV		11 22	4		
					Tefa	Tatal V. 1 = + + + + 4				
								-		
								+		
100 H										



COMPANY NAME

STREET ADDRESS

22)

### VISIBLE EMISSION OBSERVATION FORM

CESERVATION DATE

No. One

END TIME

START TIME

·	
CITY	STATE ZIP
Grisson AFB	IN 46971
PHONE (KEY CONTACT)	SOURCE ID NUMBER
7715/12 (12) 55/17/61	
PROCESS EQUIPMENT	OPERATING MODE
Boiles #5	Or Environment
CONTROL EQUIPMENT	OPERATING MODE
. Nono - b. Pass	0.2
7	
DESCRIBE EMISSION POINT	1 /
Steel Stack 66"-	inameter
	Lucious aci amus se constante
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER
DISTANCE FROM OBSERVER	Start 100 FF End
	DIRECTION FROM OBSERVER
Start 150 f-f End	Start NW End
DESCRIBE EMISSIONS	
sian loftin	End /
EMISSION COLOR	IF WATER DROPLET PLUME
Start brown End	Attached Detached D
POINT IN THE PLUME AT WHICH OPACE	TY WAS DETERMINED
Start 3	End
DESCRIBE PLUME BACKGROUND	
Sian clear sky	End ✓
BACKGROUND COLOR	SKY CONDITIONS
Start blue End blue	Sian clear End -
WIND SPEED	WIND DIRECTION
Stan 5 Knots End -	Start 170° End
AMBIENT TEMP	WET BULB TEMP RH, percent
Start SF & End -	35°F 6290
Stack SOURCE LAY	CUT SKETCH Draw North Arrow
Plume	
Sun 💠	
Wind ->	
1	
(()	Emission Point
$\sim$ 11	
	Observer's Position
	<b>&gt;</b>
14	o-
Sun	
Sun Caca	lion Line
ADDITIONAL INFORMATION	79
1	

Grissom AFB- Heating Plant

	AIR POL	LUTION PA	ARTICULAT	'E ANALY	TICA	L DATA		
BASE		DATE				RUN NUMBER		
Frissom	AFB					1		
BUILDING NUMBER			sou	JRCE NUMBE	R			
				Boiler	5			
ı			PARTICULA					
	ITEM		FINAL WEIGH	17	INIT	IAL WEIGHT	WEIGHT P	ARTICLE (m)
FILTER NUMBER			0.8240			2909	Ø.53	331
ACETONE WASHIN Hall Filter)	IGS (Probe, Front	9	5.3771		94.	8325	0.54	146
BACK HALF (if ne	eded)				_		Ø	
			Total Weight	of Particulat	es Call	ected	1.07	77
l <u>.</u>			WATER					
	ITEM		FINAL WEIGH	IT .	INIT	IAL WEIGHT (gm)	WEIGHT	WATER
IMPINGER 1 (H20)			115 n	1	2.	00 ml	ۇ بىر	_
IMPINGER 2 (H20)			アファド	1	۔	ooml	ړ ــد	_
IMPINGER 3 (Dry)			3 m	./		0 ml	3	
IMPINGER 4 (Silica	Gei)		216.5		7	0.0	16.	5
			Total Weight o		ected		6 6	ء ک.
I.	ANALYSIS	ANALY	GASES (Dry)	ANALYSIS		ANALYSIS		
	1	2		3		4	AV	ERAGE
VOL % CO2	8. 2	8.4		8. >		 	8	. }
VOL % 0 ₂	10.8	П, ь		11,6			17.	7
VOL % CO		··········						
VOL % N2								
VOL % N ₂		Vel 5 N ₂ = (1	100% - % CO ₂ -	% 0 ₂ . % C0	))			

				i	CULATE SA	PARTICULATE SAMPLING DATA SHEET	SHEET				
RUN NUMBER		SCHEMA	SCHEMATIC OF STACK	K CROSS SECTION	CTION	EQUATIONS			AMBIE	AMBIENT TEMP	
	4	7				OR = OF + 460	0			7	3 of
DATE	,					L	ŗ		STATI	STATION PRESS	
TNATO	70	T				H = 5130	2 Z	Tm. Vp	1	17 67	7 in Hg
Lout: n. Flact		٥: رخ		A.A.			- - - 5	<u> </u>		7 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	į
BASE		1		ž (		l'se f	ritut check	Check- 14	PROBE	PROBE HEATER SETTING	5
SAMPLE BOX NUMBER	SOM AF B					) re +	truin check (15111/4)- OF	( 15 14)		PROBE LENGTH	
				<u> </u>		•		; ,		: : : :	± 1
METER BOX NUMBER	IMBER		<b>)</b> =~			Post p	Post Puts chark - OK	といいと	NOZZ	NOZZLE AREA (A) J'4	3
<b>0w/</b> 0m						pest tr	pust truin chack (11 mH1) . ck	) (() () ()	ر د ده	1	0.38 %
ප		1								DRY GAS FRACTION (FA	
						5.404.5	Pressure =	241.0	2	na) work sources	
TRAVERSE	SAMPLING	MATIC	STACK TEMP	EMP	VELOCITY	ORIFICE		GAS MET	GAS METER TEMP	SAMPLE	MPINGER
POINT	TIME (Bin)	PRESSURE (10 PO)	(OF)	(Ts)	HEAD (Vp)	DIFF. PRESS.	SAMPLE	$\vdash$	AVG OUT	BOX	OUTLET
<b>Y</b>		VAC		(au)		Ξ	(20 ft)	+	$\dashv$	(o.F.)	(OF)
נ <u>י</u>	07(1) 0	7.4		1	90.0	3		2 .	5.5	7 37	44
1	1:	+:	- C 2		9	15%	7 20 2	200	140	148	# 1
*	2	5 77	40		0.70	10		٠ د د	7	201	<b>1</b>
راء	**	5-	1367			\$7,	, ×	7.0	200	777	1000
3	57		96		0.065	1.29	3	77	60	,	8 7
	3.0						264,970	·*	1		
9		7. 77	-	1	4, 4		7. 6. 6.70	4	7		
7	35	1.	257		11.0		1 05	0.2	1.9	744	برا د لا: ۱
3	3	9	272		٦٠. o	187	1	77	× )	7,71	87
*	45,	7	342		0,135	70.2	275.31	15	<b>†</b> ;	ンガス	44
١	20	8	305		0.14	2.09	_4	75	6.57	957	5.0
<b>.</b>	55	<u>,</u>	000		0.11	٠, د د	282.87 201.21	76	6.5	141	5.3
				1	11100 -		4		1		
			72 1 100			10H = 1.67			1 9 9 4 A		
							K8.04 = 17/17/12	4	<u> </u>		
				1							
								-			
DEHL FORM	18										



_			LE EMISSION	OBSER	SITAVE	ON FO	AM		No	. Two.
COMPANY NAME  G(1550m AFB - H  STREET ADDRESS		01	/	Case	AVATION			START	TIME	END TIME
Grissom AFB - H	eating	Vlan	<i>t</i>	// SEC	Vec	1990	2	13	5.7	1427
BILL 223				MIN	0	15	30	45		COMMENTS
prog zzs					5	10	10	10	i	
				]	1-3	10	<del></del> -			
Grissom AFB	STATE		ZIP 46971	2	10	10	10	5		<del></del>
PHONE (KEY CONTACT)	SOURCE ID			3	5	10	10"	10		
PHONE (NET CO.TIACT)	555525	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	4	10	10	10	10		
PROCESS EQUIPMENT	······································	L OPER	ATING MODE	5		1	1	i	-	<del></del>
Boiler #5				6	10	10		10		
CONTROL EQUIPMENT		OPER	ATING MODE	l	5	10	10	10		
Now - By-PASS	<del> </del>	<u> </u>		7	10	10	10	10		<del></del>
CESCRIBE EMISSION POINT		,		•	10	10	5	5-		
Steel Stack- 60	- VIAM	ta		9	5	خ	10	5		
				10						
HEIGHT ABOVE GROUND LEVEL	HEIGHT REI	LATIVE T	O OBSERVER	1├	10	10	10	10	[ <del></del>	<del></del>
100'	Start /00	0' 1	End	"	10	10	10	10		
DISTANCE FROM OBSERVER	DIRECTION			12	10	10	10	10		
Start 150' End	Stan Nu		End	13	10	10	15	15		
DESCRIBE EMISSIONS	•			14		1				
SIAN JOFTING	End /	DOD! ET	PILIME	15	15					
	Attached 🗆	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Detached G	<b>                                     </b>	5	5	5	10		
POINT IN THE PLUME AT WHICH OPACE		RMINED		16	5	5	5	10		
Start 3'	End			17	5-	5	5	10		
DESCRIBE PLUME BACKGROUND		· · · · · · · · · · · · · · · · · · ·		18	5	10		10		
Stan clear sky	End —			19						
BACKGROUND COLOR	SKY CONDIT		End		10	10	10	10		
Start War End -	WIND DIREC		ing	20	10	5	10	10		
SIEM & KNOTS END	Sian 22	2	End	21	10	10	10	5		
AMBIENT TEMP	WET BULB 1			22	10	10	10	10		
Start 54 End	49		66%	23	<i>/-</i>					
	OUT SKETCH		Draw North Arrow	i	2	10	10	10		
Plume .	$\bigcirc$	con Hori		24	10	10	10	10	<u> </u>	
Sun 💠	O'			25	5	10	5	5		
Wind		_		26	5	10	D	10		
6	Emission	Point		27			5			
			<del></del>	28		5		10		
1995 EU				l <del> </del>	10	10	10	10		
ituly O				29	5	10	10	10		
		•	}	30	5	10	10	10		
	11.			OBSE	BVER'S N	IAME (PF				
à	Observers	Position		LR	AMON.		Cint	The state of		
	<b>\</b>			OBSE	NVSN'S S	CNATU				DATE
14	o -	<b>\</b>	_ i	(C)	NIZATION	To	esc	<u>~</u>		11 Dec 129
Sun Local	ion Line		->			H/E	QA			
ADDITIONAL INFORMATION				CERT	SEO BY			, ,	, ,	DATE
FORTING BY COUNTY HOLD			82	LZ	XH.	Air	Lich	, 1S	and	_1

	AIR POLL	UTION PARTICUI	LATE ANA	LYTICAL	DATA		
BASE	٥	ATE			RUN NUMBER	•	
Grisson	AFB				<u>a</u>		
BUILDING NUMBER			SOURCE NU				
			13	معاه	5		
1.		PARTIC					
ľ	TEM	FINAL W		INITI	AL WEIGHT	WE	EIGHT PARTICLES
FILTER NUMBER		,84	29	. 2	892		0.5537
ACETONE WASHINGS Hall Filter)	(Probe, Front	98.03	19	97.	5622	c	.4697
BACK HALF (If needs	d)						Ø
			eight of Partic	ulates Colle	octod	1.	0234 am
11.		WAT		<del></del>		1	
l'	TEM	FINAL W		INITI	AL WEIGHT		WEIGHT WATER
IMPINGER 1 (H20)		7 5	- 6		_ 00		26
IMPINGER 2 (H20)		2. (	7	<u>.</u>	2 00		7
IMPINGER 3 (Dry)	IMPINGER 3 (Dry)				υ		1
IMPINGER 4 (SIIIce Ge	el)	21	0, 8	٥٥ ـ ١٥			10.8
Total 1			Valight of Water Collected				44.8
111.		GASES	(Dry)				
ITEM	ANALYSIS 1	ANALYSIS 2	ANAL	_YSIS 3	ANALYSIS		AVERAGE
VOL % CO2	6, 8	6.8	6.8	7			ь. 8
VOL % 02	13, 2	13. 2	13.	)			13.2_
VOL % CO							
VOL % N2							
		Vel % H ₂ = (100% - %	CO2 - % O2 -	% CO)			

			PAI	PARTICULATE SAMPLING DATA SHEET	APLING DATA	SHEET				
NUN NUMBER	,	SCHEMA	SCHEMATIC OF STACK CROS	K CROSS SECTION	EQUATIONS			AMBIENT TEMP	'	
9778	~	-			OR = OF + 460			STATION DODGE	57	qо
- V	60				<u>.</u>	7			3	:
PLANT		Dr. Kr		يع ولود	H #	SISO-FG-CP: A	م. د ده	HEATER		/ In Hg
Theating Plan		4	(	, o	יל אגם	Pre pitot check - OK	ok	PROBE	PROBE HEATER SETTING	90
Crissom A	AF &		¥8		fro tr	fro train chock (15 in Hg)	15 in H3) - 0K			
		_			,		i	74086		<u>ئ</u>
METER BOX NUMBER	10 ER		9 1		fost pil	rost pitot chark -	1 0 大	NOZZLE	NOZZLE AREA (M) JiA	
₩ <b>Ò/</b> ₩Ò		1			Fost fra	Fost train chock (13, 1 Mg) - cK	1,2 Hy) - ( K	ප	0.38	13 ps 8
		<b>₹</b>	_						0.84	
3				774 77	static pressure =	5 x1'0 = = 21nss	لہ	DRY GA	DRY GAS FRACTION (Fd)	
TRAVERSE	SAMPLING	STATIC	STACK TEMP	VELOCITY	ORIFICE	GAS		TEMP	SAMPLE	IMPINGER
POINT	TiME (min)	PRECSURE (in H20)	(oF) (Ts) (oR)	HEAD (Vp)	PRESS.	SAMPLE VOLUME (cu ft)	OF)	OUT (P.F.)	BOX TEMP (OF)	OUTLET TEMP (OF)
Y 1	6 (1515	2.9	170	0.075	1.35	x 6.553	$\vdash$	6.3	130	44
7	۲	4.3	77.7	125	2.03	84 68 2	6 4	1,7	38 7	イン
~	11	4	2 30	_	1.78	93.3	7.3	67	250	45
**	\ \ \	74.3	7.7	٦.	.98		75	67	259	
^->	74	ナン	246	0.045	74	300° 6 C	7,7	100	24.5	ر ا <del>ز</del>
	3.1					, ,			,,,	1 1
					- [				ą.	, , , ,
4	36	3	1 2 7	1 1 2	40	2011	90	99	+ 4-4-	) } !
3	4.0	٠, d	292	13	1.98		74	6.7	1,57	200 7
<b>J</b> **	77	30	303	0.145	81.2	2	75	99	7.5 7	5.0
^-	as	7.1	507	0.155	18.7		74	99.	とかな	05
q	0 0	,	7,,	0.115	1.73	330 506	/3	٥	453	>
			(d)	JE = 4.58×	1					
			TE = 170		AH = 1.89		1 Th	70		
					70.	Total Val = +5.	453			
OEHL FORM	18									



COMPANY NAME

AFB- Heating Plan

### VISIBLE EMISSION OBSERVATION FORM

Three CASERVATION DATE
-11 DEC 19
SEC 15 START TIME 1530 1600

No.

Grisson AFB-	Heatin.	. /	gat			14	90	1	530	1600
Grisson AFB- STREET ADDRESS Bldg 223				SEC	0	15	30	45		COMMENTS
Wedg LLS				1	15	15	15	20		
	I STATE	—-т	ZIP	2	15	15	15	15		
Grisson AFB	IN			1 3	20	5	15	20		
PHONE (KEY CONTACT)	SOURCE ID I	NUMBER		1	15	15	15			
		02524	TING MODS	5			1 .	1		
PROCESS EQUIPMENT		UPERA	TING MODE	6	15	15		20		<del></del>
CONTROL EQUIPMENT		OPERA	TING MODE	7	<del></del>		15	15		<del></del>
· None - By pass				¦├——	10	15	15	15	<del></del>	<del></del>
CESCRIBE EMISSION POINT				-	15	15	15	15		
Steel Stack				9	10	10	15	15		
				10	15	15	10	15		<del> </del>
HEIGHT ABOVE GAOUND LEVEL	HEIGHT REL		O OBSERVER	11	10	10	15	10		
DISTANCE FROM OBSERVER	DIRECTION F			12	15	10	10	10		
Smr 150' End	Start N	Ε	nd	13	10	10	10	10		
DESCRIBE EMISSIONS	End ~			14	10	10	10	10		
SIAN OFTING	IF WATER DR	OPLET	PLUME	15	15	15	15	10		
Sian brown End	Attached 🗇		Detached G	16	15		10	5		<del></del>
POINT IN THE PLUME AT WHICH OPACE	P-4	_	;	17		15			<del></del>	<del></del>
Sian 3/ DESCRIBE PLUME BACKGROUND	End				5	5	5	5		
Start : K. /b/w	End _			18	10	5	5	5		
SIAR ; K, (blue) BACKGROUND COLOR	SKY CONDITI			19	10	5	5	5-		
Start Blue End	SIAN CLA		nd	20	5-	5	10	10		
•	San 200		nd	21	10	5-	5-	5-		
SIAN 9 KM/T END	WET BULB TE		RH, percent	22	10	5	5	5	1	
Start 56 End	50'			23	5	5-	5-	5		
1 m/s C 1	OUT SHETCH		Draw North Arrow	24	10	10	5	5-		
Plume Sun 💠	5/	_		25	5	5-1	5	5		
Wind -	سر کم	رکے		26	5-	5	5	5	1	
6	Emission	5	<b>5</b> 4	27	-		5	·5-	<del></del>	
	COO		-	28	-	<u>- ر</u>				
* ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * ( )		-		29	2	<del>-</del>	5	10		
			,	30	5	5	10	10		
,'\\X\		•	·	ليسا	10	10	10	10		
×					iver's n <i>Amou</i>	AME (PR		Tron		
	WE!	Doilie				GNATUF	-	De		DATE
14	~ ~			CORRE	MZATION	<u>U 1</u>	m			11 De
Sun Local	tion Line		->	A	FOE	HL/E	QA			
ADDITIONAL INFORMATION			85	CERTI	TED BY	1.	Ponta	11		DATE
			00	10	K45 /	tir 1	Onla	/ /)	) and	ı

	AIR POL	LUTK	ON PARTICUL	ATE ANA	LYTICAL	DATA		
BASE	<u> </u>	DATE	· · · · · · · · · · · · · · · · · · ·			RUN NUMBER		
SUILDING NUMBER	AFR				- 1	3		
BUILDING NUMBER	151 0			SOURCE NU	MBER			
		_			ler S			
1.			PARTICU		<del></del>	<del></del>		
'	TEM		FINAL WE		INIT	AL WEIGHT	W	(gm)
FILTER NUMBER			1. 170	8	-7	-869		0.8839
ACETONE WASHINGS Half Pilter)	(Probe, Front	<u> </u>	95.31	53	94.	4525		0.8628
BACK HALF (if needs	od)							Ø
				ght of Partic	ulates Colle	ected	1	.7467 em
11.			WATE	R				
l .	TEM		FINAL WE	IGHT	INIT	AL WEIGHT		WEIGHT WATER
IMPINGER 1 (H20)			7 30	) <del></del>	د	. 00		30
IMPINGER 2 (H20)			21	0	د	- 00		10
IMPINGER 3 (Dry)	_		1		0			1
IMPINGER 4 (Silica Ga	<b>•1)</b>		د/ ۷	٠, ٢	200			12.2
_		-		ght of Water	Callected			53. L m
110.		<u> </u>	GASES	· ·				
ITEM	ANALYSIS 1		ANALYSIS 2	ANAI	LYSIS 3	ANALYSIS 4		AVERAGE
VOL % CO2	7. 1		7.4	7.	3			7,3
VOL % 02	12.7		<b>2</b> .7	(2.(	<b>&gt;</b>			12.7
VOL % CO								
VOL % N ₂								
		Vol 9	i H ₂ = (100% - % (	CO ₂ - % O ₂ .	% CO)			

APPENDIX J
Calibration Data

### NOZZLE CALIBRATION DATA FORM

Nozzle	N	ozzle Diam	eter ^a	ΔD, b	D C
identification number	mm (in.)	D ₂ , mm (in.)	D ₃ , mm (in.)	mm (in.)	D _{avg}
	0 380 in	0.380	0.374	0.001	0.380

diameter must be within (0.025 mm) 0.001 in.  D 1,2,3,

 $\Delta D$  = maximum difference between any two diameters, mm (in.),  $\Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$ 

 $D_{avg} = average of D_1, D_2, and D_3.$ 

### TYPE S PITOT TUBE INSPECTION DATA FORM

#8A

Pitot tube assembly level? yes no pitot tube openings damaged? yes (explain below) no  $\alpha_1 = 1$  ° (<10°),  $\alpha_2 = 2$  ° (<10°),  $\beta_1 = 6$  ° (<5°),  $\beta_2 = 2$  ° (<5°) (0.938)  $\alpha_1 = 1$  °,  $\alpha_2 = 1$  °,  $\alpha_3 = 15/6$  cm (in.)  $\alpha_4 = 15/6$  cm (in.)  $\alpha_5 = 1$  °,  $\alpha_5 = 15/6$  cm (in.)  $\alpha_5 = 15/6$  cm (in.); <0.32 cm (<1/8 in.),  $\alpha_5 = 15/3$  cm (in.); <0.08 cm (<1/32 in.)  $\alpha_5 = 15/3$  cm (in.)  Calibration required? yes v no

### METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Princey Stanback calibrated 19 July 90

	Gas v	olume	T	emperati	ıre				
Orifice manometer setting (ΔΗ),	Wet test meter (V _w ),	Dry gas meter (V _d ),	Wet test meter (t _w ),	Inlet (t _d ),	<pre>gas met Outlet (t_d), o</pre>	Avg" (t _d ),		Yi	ΔΗ@
in. H ₂ 0	ft ³	ft ³	°F	°F	°F	°F	min	_	in. H ₂ 0
0.5	5	4.984	79 85 542.0	885435	815365	541.0	13.1	1.0001	GOOD 1.
1.0	5	5.006	\$ 543.5	895485	81 541.6	544.85	9.2	0.9987	1.932
1.5	10	10,080	825420	89 5015	81575	547.0	15.0	0.9976	1.908
2.0	10	10.225	2 542.5	94 97555	104 .	550,75	13.1	0.9871	1.932
3.0	10	10.175	\$ 543 4	10585	88547	52.75	10.7	0.9932	1.928
4.0	10	10.280	83 543.0	1050	549	54.5	97	0.9838	1.8347

		<del></del>	7.96
ΔH, in. E ₂ O	<u>ΔΗ</u> 13.6	$Y_{i} = \frac{V_{w} P_{b}(t_{d} + 460)}{V_{d}(P_{b} + \frac{\Delta H}{13.6}) (t_{w} + 460)}$	$\Delta H@_{1} = \frac{0.0317 \Delta H}{P_{b} (t_{d} + 460)} \left[ \frac{(t_{w} + 460) \Theta}{V_{w}} \right]^{2}$
0.5	0.0368	Y: = (5\(\frac{30.12\(\times\)}{12.0}\)	(.0317)(55) (542(5.4)) 2 = 967 1.748
1.0	0.0737	10×12×13×1544 75×	(10317X1.8) (543.5X9.2) 2 - 1,932
1.5	0.110	Y= (10/30-12)(547.0)	(1.0317) (542) (15) 2 1.9076
2.0	0.147	- (10)(32.12)(550 ES) (10.715 \(\frac{7}{30.267}\)(5425)	(20317)(2.0) (5425)(3.1) 2-1.9320
3.0	0.221	(10/20/10/557.75) (10/25/30.341/5430)	(6317×30) (545×107)2 = 1,928
4.0	0.294	- (10/30-12) 5543) - (10/30/30/414)(543)	(317(4) (5079.2) Z

If there is only one thermometer on the dry gas meter, record the temperature under t_d.

Quality Assurance Handbook M4-2.3A (front side)

121 7

Grissom AFB وع POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

Iest	Test number Ore		Date 20 Sy	05 30	Meter b	-C Syp 40 Meter box number //y/ 2/ 2	//"+e	7 47	Plant	Plant Pact HII ACR
Baros	Barometric pressure, P =	ure, $P_b = \frac{2}{3}$	29.43 in.	Hg Di	ry gas n	in. Hg Dry gas meter number			Pretes	Pretest Y 0, 493
Orifice	Gas volume	olume	£	Temperature	ire					
Banometer	Wet test	Dry gas	Wet test	ā	Dry gas meter	eter				
(AH).	Beter (V)	meter (V)	meter	Inlet	Outlet	Æ	1			V. P. (t. + 460)
in. H.0		(P)	3	_	( P2) ( P2)	۳	Time	Vacuum	×̈́	B
,	11	ft	2 × ×	4 84	F		4 % (8);	setting, in. He	• ,	$V_{d} \left( {}^{P}_{b} + \frac{\Delta H}{13.6} \right) \left( {}^{L}_{w} + 460 \right)$
3.0	10	9.89	74 534	\$ 5.0	79	244	7.7.2	544 10 CF 11 4		10 (21, 23) (544)
S (K	01	4 9 11.	19 53 6 90	T	14	211/2	,,,,	- 1	1,0127	4.89 (2.9.2. + 8.4/3, 6.2.9.4
,		1,776	76 / 20.2	3	#	243.13	16.55	243. 13 16.55 11. 4	1.0117	4 4 4 5 (4 2 3 + 2 4 ) 5 x 5
3	27	9.97	77 537.5 44			547.75	16.57	547.75 16.57 11.9 1.0145	1.0145	10 (24.23) (547.75)
								-		THE TAX TO SEE

If there is only one thermometer on the dry gas meter, record the temperature under  ${f t}_{f d}$ 

Y = 1.0130

 $V_{\rm w}=6as$  volume passing through the wet test meter, it

 $V_d = Gas$  volume passing through the dry gas meter, ft³.

= Temperature of the inlet gas of the dry gas meter, °F.  $t_y$  = Temperature of the gas in the wet test meter,  $^{9}F$ .

= Tesperature of the outlet gas of the dry gas meter, oF.

 $t_d$  = Average temperature of the gas in the dry gas meter, obtained by the average of  $t_d$  and  $t_d$ , of.  $\Delta H$  = Pressure differential across orifice, in. H₂0.

 $Y_1$  = Ratio of accuracy of wet test meter to dry gas meter for each run,

Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; colerance = pretest Y ±0.05Y. 0.943 ± 0.04965

0.9 434 (- Yout -> 1.0427 0.993 \$ 0,04965

 $\theta = Time$  of calibration run, min. P_b = Berometric pressure, in. Hg.

# POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

(45.5)(4.6) 13.4) (5.35)  $v_{d} \left( {}^{P}_{b} + \frac{\Delta H}{13.6} \right) \left( {}^{L}_{w} + 460 \right)$ V_w P_b (t_d + 460) 9.195 (29.12 + 1.5) 1557 (4186)01 9.6.18 (29.12 + 1.5/ Plant Post Grisson 0:99 Pretest Y 70. 1.033 1.039 setting, Vacuum in. Hg 7 5 Meter box number Nufech 2 14.63 14.73 (e) min 14.71 Dry gas meter number Average 537 51.5 OKS18 B1/3 Dry gas meter Outlet 94539 76 535 (tq,), (td), 94.546 76538 Temperature Inlet 2B Jan 91 = 29.130 in. Hg Wet test meter (t_v), 74 5.35 74 536 75 530 Date Dry 888  $(v_d)$ , ft 9.678 9.695 Barometric pressure, P Gas volume Wet test Beter 2 2 20 Test number Manometer setting, in. H20 Orifice . ₹

If there is only one thermometer on the dry gas meter, record the temperature under  $\mathbf{t}_{\mathbf{d}}$ 

vbere

92

 $V_d = Gas$  volume passing through the dry gas meter, ft.  $V_{\mathbf{y}} = Gas$  volume passing through the wet test meter, ft.

0,943 + Y -> 1.043

 $t_{\rm w}$  = Temperature of the gas in the wet test meter, °F.

= Temperature of the inlet gas of the dry gas meter, oF.

= Temperature of the outlet gas of the dry gas meter, oF. ogt o

 $t_d$  = Average temperature of the gas in the dry gas meter, obtained by the average of  $t_d$  and  $t_d$ , of.  $\Delta M = Pressure differential across orifice, in. <math>H_20$ .

= Ratio of accuracy of wet test meter to dry gas meter for each run.

= Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y +0.05Y.

= Barometric pressure, in. Hg.

= Time of calibration run, min.

NUTFCH ?				
IN LET /or	hermocouple numbe	T.	JAN 89	Date <u>3</u>
	metric pressure			
ASTM: 63	mercury-in-glass		GARRICAN SCOTT	alibrator
Temperature difference,	Thermocouple potentiometer temperature, °C	Reference thermometer temperature, °C	Source ^a (specify)	Reference point number
. 5	43	43.5	HOT WHEL BATH	ILET -
Ø	26	26	LENG LENG	<b>-</b>
,	42	43.5	IN WALL BATH	-LET
.5	26.5	26	200M TEMP	-

aType of calibration system used.
b
[(ref temp, °C + 273) - (test thermom temp, °C + 273)] 100≤1.5%.
ref temp, °C + 273

Quality Assurance Handbook M5-2.5 ** INVST BE WITHIN 3°C OF REFERENCE

	mperature _	26 °C Baron Reference: m	nermocouple numb metric pressure mercury-in-glass	29.175 in. Hg
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature c difference,
0	ICE Bath	0	0	_
_	ROOM TEMP	25.5	26.1	0.6

bType of calibration system used.

$$\begin{bmatrix}
\frac{\text{(ref temp, °C + 273)} - (\text{test thermom temp, °C + 273})}{\text{ref temp, °C + 273}}
\end{bmatrix}$$
100<1.5%

* MUST BL WITHIN 1ºC OF REF

^aEvery 30°C (50°F) for each reference point.

	10			IMPINGER
Date	19/0cT 8		nermocouple numb	C 211 /
Ambient te	mperature _	26° °C Baron	metric pressure	29.175 in. Hg
Calibrator	GARRISON/	Reference: m	mercury-in-glass	NBS
	50077		other	
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
0	ICE BATH	0	0	
_	ROOM TEMP	26.0	26.6	0.6

b_{Type} of calibration system used.

$$\begin{bmatrix}
\frac{\text{(ref temp, °C + 273)} - (\text{test thermom temp, °C + 273})}{\text{ref temp, °C + 273}}
\end{bmatrix}$$
100<1.5%.

* MUST BE WITHIN POC OF REF

aEvery 30°C (50°F) for each reference point.

Date	19/8cT 85	ŢTI	hermocouple numb		
Ambient temperature 26 °C Barometric pressure 29.775 in. Hg					
Calibrator	GARRISON/ SCOTT		mercury-in-glass MBS		
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature c difference,	
C	ICE BATH	0	0.6	0.6	
_	ROOM TEMP	25.8	25.6	0.2	
<del></del>					

b_Type of calibration system used.

$$\begin{bmatrix}
\frac{\text{(ref temp, °C + 273)} - (\text{test thermom temp, °C + 273})}{\text{ref temp, °C + 273}}
\end{bmatrix}$$
100<1.5%

* MUST BE WITHIN I'C OF REF

^aEvery 30°C (50°F) for each reference point.

Date	1MPINGER  per DY 29.232/ 29.175 in. Hg  5 NBS			
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
0	ICE BATH	0	0.6	0.6
	ROOM	25.5	25.6	0-1

b_{Type} of calibration system used.

$$\begin{bmatrix}
\frac{\text{(ref temp, °C + 273)} - \text{(test thermom temp, °C + 273)}}{\text{ref temp, °C + 273}}
\end{bmatrix}$$
100\leq1.5%.

* MUST BE WITHIN I'C OF REF

^aEvery 30°C (50°F) for each reference point.

IMPINGER Date 1986 Thermocouple number Ambient temperature 26 °C Barometric pressure 29.175 in. Hg Calibrator GARRISON/ Reference: mercury-in-glass NBS SCOTT other Reference Thermocouple Temperature_C Reference thermometer potentiometer Sourceb difference, point number a temperature, °C temperature, (specify) ICE BATH 0 0 0.6 0.6 ROOM 26 25,5 TEMP

bType of calibration system used.

$$\begin{bmatrix}
(ref temp, °C + 273) - (test thermom temp, °C + 273) \\
ref temp, °C + 273
\end{bmatrix}$$
100<1.5%

* MUST BE WITHIN / C OF REF

^aEvery 30°C (50°F) for each reference point.

IMPINGER Date 19/ 20 Oct 88 Thermocouple number Ambient temperature 26 °C Barometric pressure 29.175 in. Hg Calibrator GARRISON/ Reference: mercury-in-glass MBS other Thermocouple Reference Temperature_C Reference thermometer potentiometer Sourceb difference. point number a temperature, °C temperature, (specify) 0 ICK 0.6 0 0.6 BATH ROOM 26 TEMP 25.5

^bType of calibration system used.

 $\begin{bmatrix}
\frac{\text{(ref temp, °C + 273)} - (\text{test thermom temp, °C + 273})}{\text{ref temp, °C + 273}}
\end{bmatrix}$ 100<1.5%

* MUST BE WITHIN I'C OF REF

aEvery 30°C (50°F) for each reference point.

IMPINGER Date 19/20 Oct 88 Thermocouple number  $\frac{D7}{29.232}$ Ambient temperature 26 °C Barometric pressure 19.175 in. Hg Calibrator GARISON/ Reference: mercury-in-glass MR5 other Thermocouple Reference Temperature_c potentiometer Reference thermometer Sourceb difference, point number^a temperature, temperature, \$60 x °C (specify) ICE 0 0.6 0 BATH ROOM 0.5 25.5 26 TEMP

b_{Type} of calibration system used.

$$\begin{bmatrix}
(\text{ref temp, °C + 273}) - (\text{test thermom temp, °C + 273}) \\
\text{ref temp, °C + 273}
\end{bmatrix}$$
100\leq1.5%

* MUST BE WITHIN I'C OF REF

^aEvery 30°C (JJ°F) for each reference point.

STACK SENSOR CALIBRATION: 19-20 Oct 88

SENSOR #	REFERENCE TEMPERATURE (deg K) X axis	TEST TEMPERATURE (deg K) Y axis	
PI	273.30 371.90 447.00	273.60 373.60 450.20	Regression Output:  Constant -4.30 Std Err of Y Est 0.20 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00  X Coefficient(s) 1.02
			<pre>X Coefficient(s)     1.02 Std Err of Coef.     0.00  % Deviation @ 2000 F(1093.3 K) = 1.29%</pre>
P2	273.30 371.80 447.60	273.60 373.60 450.80	Regression Output:  Constant -4.27 Std Err of Y Est 0.11 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			<pre>X Coefficient(s)</pre>
Р3	273.30 371.90 447.60	274.10 374.10 450.80	Regression Output:  Constant -2.96 Std Err of Y Est 0.03 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			X Coefficient(s) 1.01 Std Err of Coef. 0.00
P4	273.30 371.80 447.60	273.60 373.60 450.80	Regression Output:  Constant -4.27 Std Err of Y Est 0.11 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			X Coefficient(s) 1.02 Std Err of Coef. 0.00
			% Deviation @ 2000 F(1093.3 K) = 1.27% 101

P5	273.30 371.90 447.60	274.10 373.60 450.80	Regression Output: Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	-3.03 0.37 1.00 3.00 1.00
			X Coefficient(s) 1.01 Std Err of Coef. 0.00	
			% Deviation @ 2000 F(1093.3 K	) = 1.08%
P6	273.30 371.90 447.60	273.30 373.60 450.80	Regression Output: Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	-5.03 0.09 1.00 3.00 1.00
			X Coefficient(s) 1.02 Std Err of Coef. 0.00	
			% Deviation @ 2000 F(1093.3 K)	) = 1.37%
P7	273.30	273.30	Regression Output:	
	371.90 447.60	373.60 450.80	Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	-5.03 0.09 1.00 3.00 1.00
			Std Err of Y Est R Squared No. of Observations	0.09 1.00 3.00
			Std Err of Y Est R Squared No. of Observations Degrees of Freedom X Coefficient(s) 1.02	0.09 1.00 3.00 1.00
P8			Std Err of Y Est R Squared No. of Observations Degrees of Freedom  X Coefficient(s) 1.02 Std Err of Coef. 0.00	0.09 1.00 3.00 1.00
P8	273.60 371.80	273.60 373.00	Std Err of Y Est R Squared No. of Observations Degrees of Freedom  X Coefficient(s) 1.02 Std Err of Coef. 0.00  % Deviation @ 2000 F(1093.3 K)  Regression Output: Constant Std Err of Y Est R Squared No. of Observations	0.09 1.00 3.00 1.00 = 1.37% -4.75 0.39 1.00 3.00

### APPENDIX K

**EPA Computer Program Emissions Calculations** 

(This page left blank)

*F6# *M5		KRÇM HME	714	XROM ··	ery e
PUN NUMBER		PUR NUMBER		RUN NUMBER	. , .
ONE Ballon3	₽P.	THE Boller 3	<b>9</b> 8	THREE Boiler 3	5
METER BOX Y?	•	METER BOW Y?		METER BOX Y?	RUŅ
0,9930	RUN	8.9930	RU	0.9930	RUN
DELTA H?		DELTA H?	RU	DELTA H?	
1,1400	PUN	1.0900 EAS PRESS ?	RV.	1.0600	PUK
SAR PRESS ? 29.1010	<b>R</b> OM	29.1010	RUP	BAR PRESS ? 29.1010	RUN
METER VOL ?		METER VOL ?		METER VOL ?	<b>K</b> tt-4
33.0490	PUH	32.2860	R ¹¹	32.1100	<b>R</b> 115
MIR TEMP F? 48,9000	<b>9</b> 156	MTR TEMP F? 50.0000	Riff.	MIR TEMP F?	
t, other gas	* 201	% OTHER GAS		50.0000 % OTHER GAS	RUN
REMOVED BEFORE		REMOVED BEFORE		REMOVED BEFORE	
DRY GAS METER ?	5111-	DRY GAS METER ?	RU	DRY GAS METER ?	
STATIC HOW IN ?	PUK	STATIC HOM IN ?	E.C.	ATATTA HAN THE A	RUN
1200 1200	ទិរាំ្រ	-,1200	<b>S</b> ijk	STATIC HOH (N ? 1200	RUN
STOCK TEMP.		STACK TEMP.	7.U	STACK TEMP.	R.U.
774.0000	Şiri Tarafar	343,0000 • 83751 3	PU.	339,9000	PUN
ო_, დაუგი : 29,6000	<b>9</b> /A	ML. MATER ? 30.0000	PUt:	ML, WATER ?	
	* • *	(MS. % ⊑32 = 4.3	•	39,4000 IME, 1: HOH = 5.7	\$100 100
				237 C GUR * . C.	
; 4084 <u>2</u> 13		% 40H=4.3		% HOH=5.3	
		1 0021		4 092?	
', 332° 7,8900	PUN	5.7000	<b>P</b> Un:	5,0000	RUN
. (XYG <b>E</b> X)	•	N OXYGEH?	₽i™	% OXYGER?	
12.0000	entra. Najvis	14.5000 % 00 ?	<b>6</b>	15.7000	PUN
1.09 0	₽U+		<b>R</b> . ¹¹⁵ .	\$ 60 7	RUI.
MOL WI OTHERS	<b>₹</b> ₩	MOL WT OTHER?	•	MOL WT OTHER?	towar.
2 4 V V V	PIN		<b>S</b> fa:		RUN
		MWd =29,49		MOLE - 55 (5	
™¥2 =29.73 Mu <b>dE</b> 7=29.27		MW WET=29.01		MWd =29.43 MW WET=28.82	
四級 難直(一直了。在4				HA ME! COLVE	
		SORT PSTS ?			
SOPT PSTS 7	Direction	8. <b>9</b> 572	RUH	SQRT PST3 2 7.8836	RUK.
8.5158 Time Min ?	PUK	TIME MIN ?		TIME MIN ?	πų ·
69,9998	<b>8</b> (ii):	60,0000	RUH	60.0000	RUN
NOZZLE DIA ?		NOZZLE DIA ? 0.3800	<b>8</b> 1) ¹ .	NOZZLE DIA ?	61.11
,7889 	<b>8</b> 0%	STK DIA INCH ?	* •	.3800 STK DIA INCH ?	RIN
STK DIA INCH 1 66.0000	<b>P</b> (**)	66.0000	<b>S</b> úr:	66.0000	PUN
0.4.00		MTD 015 - 30	770		
* YOL MTR STE = 33.		* VOL MTR STD = 32. STK PRES ABS = 29		* VOL MTR STD = 32.	
STK PRES ABS = 29		VOL HOH GAS = 1.4		STK PRES ABS = 29 VOL HOH GAS = 1.8	
VOL HOH GAS = 1.3 % MOISTURE = 3.89		% MOISTURE = 4.18		% MOISTURE = 5.32	
4 NUISTURE = 0.00 MOL DPY GAS = 0.0		MOL DRY GAS = 0.9		MOL DRY GAS = 0.9	
% NITROGEN = 80.3		% NITROGEN = 79.8		% NITROGEN = 79.3	<u> </u>
MOL WT DRY = 29.7	73	MOL HT DRY = 29.4 MOL WT WET = 29.0		MOL WY DRY = 29.4	
MOL WT WET = 29.3		YELOCITY FPS = 19		MOL WT WET = 28.8 VELOCITY FPS = 19	
VELOCITY FPS = 20 STACK AREA = 23.7		STACK AREA = 23.7	6 -	STACK AREA = 27.7	
9790% ACEM = 29.3		STACK ACEM = 28,3		\$790K ACFM = 27.8	
* 9740) 080FM = 17.	370.	<pre>k STACk DSCFM = 17.</pre>		* STACK DECEM = 18	
% 191914 <b>5</b> 771 = 3	4, 37	100		# 180KINETIO = 8	₹,₹

### XROM "MASSELO"

RUN NUMBER 3.1000 RUN VOL MTR STD ? 33.2710 STACK DSCFM ? 17,632,0000 RUN FRONT 1/2 MG 2 1,746.1000 RUhBACK 1/2 MG ? 0.0000 RUN F GR/DSCF = 0.8099 F MG/MMN = 1,853.3199 F LB/HR = 122.4005 F KG/HR = 55.5208 RUN NUMBER 3.3000 RUA VOL MTR STD ? 32.1930 PUN STACK DSCFM ? 16,956.0000 PIJN FRONT 1/2 MG ? RUH. 255.2000 BACK 1/2 MG ? 0.0000 Pilk; F GR/DSCF = 0.1227 F MG/MMM = 279.9488 5 (BVHR = 17,7796) F KG/HR = 8.0648 RUN NUMBER 3.20 PU. YOU MIR STD ? 32.372 STACK DSCFM ? 17,285.99 PUN FRONT 1/2 MG ? 306.00 PHN BACK 1/2 MG ? 0.00 RIII F GR/DSCF = 0.15

F MG/MMM = 333.81 F LB/HR = 21.61 F = KG/HR = 9.80

		XROM ™MS	Ţu F	XROM THE	TH F
	rru r	RUN NUMBER		RUN NUMBER	
PUN NUMBER	•	THO Boiler 4	BUC	THREE Boiler 4	
INE Builer 4		METER BOX V?	5ĤH		<b>B</b> 0.4
·	<b>B</b> fl/2	,9930	Sin:	METER BOX Y? .9930	PH:
METER BOX Y?	Bur.	DELTA HO		DELTA H?	p
,9938 - actions	RUN	.7200	RUN	.7106	Pills.
DELTA HC 1.0200	<b>2</b> 00	BAR PRESS ?		BAR PRESS ?	
BAR PRESS ?	P.V.:	29.2600	RUN	29.2600	bir:
17.2600	<b>R</b> ⊕	METER VOL ?	Bille*	METER VOL ?	Birc
METER VOL :		30.0870 MTR TEMP F1	KUN	30.0290 MTR TEMP F?	Pilli:
31.4130	<b>R</b> UH	64.0000	SIIN	58.0000	piji.
MTR TEMP F?	Bir.	% OTHER GAS		% OTHER GAS	r .
52,9990 ' aruse cac	RC*	REMOVED BEFORE		REMOVED BEFORE	
A OTHER GAS REMOVED BEFORE		DRY GRS METER ?		DRY GAS METER ?	
DRY GAS METER ?			RUM		PUH
	<b>₽</b> UH	STATIC HOW IF ?	RUN	STATIC HOW IN ?	B. B.
STATIC HOW IN F		-,1380 STACK TENP.	RUN	1380 etany temp	<b>P</b> ÜN
1380	<b>S</b> fin	321,0000 321,0000	PIS.	STACK TEMP. 294.0000	<b>P</b> (j)
ETACK TEMP.	sur.		•	ML. WATER ?	7.2
301,0000	RUN	ML, WATER 9 36,7000	<b>7</b> ,7%	34.5000	Diff.
71, 49757 ? 17,0000	Ž.	IMP. 1 HOM = 5.0		IMP. % HOH = 5.2	
	• •				
		% HOH=5.5		% HON=5.2	
. HOH≃€.0					
		% 002?		% 002?	
1, 0027		7,8000	RIIN	4 592: 8 <b>.500</b> 0	Pijik.
5.7300	로 통한	3 OXYGEH?	0.19,*	% 0%YG <u>E</u> N?	F1!"
1. OXYGEN?	* • •	11.8800	RIJ-	11.2000	RUN
11.0000	Rijk	% CO ?		% CO ?	
1.00 7		MAL UT ETHER	RUH		<b>Bil</b> it
	PU.	MOL WT OTHER?	Bills	MOL WI OTHER?	
TIL WT OTHERS	•••		RIJN		RUN
	Pip	MWd =29.72		MWd =29.81	
MWd =29.83		MW WET=29.07		NN WET=29.20	
MW WET=29.12					
		•••			
		SORT PSTS 2		SQRT PSTS ?	
SORT POTS O	<b>5</b>	6.2137 TIME MIN ?	Bing	6.0339	Bilti
7.3427 Fime Min ?	<b>무</b> 년(1	67,5000	PUN	TIME MIN 2 67.0000	Right
.nc nin : 60.0000	<b>2</b> 9%	NGZZLE DIA ?		NOZZLE DIA ?	Kiefe
MOZZLE DIA ?	* <del>-</del>	.3900	Kita	.3800	RUN
.3800	<b>9</b> (3):	STK DIA INCH ?		STK DIA INCH ?	
STK DIA INCH C		66 <b>.90</b> 00	RUN	66 <b>. 0900</b>	RUS
66.9000	RUN	* VOL MTR STD = 29.4	*04	A MAI MEA ATT	
. USE MID OFF THE	• • • •	STK PRES 985 = 29.4		* VOL MTR STD = 29.7	
* VOL MTR STD = 31.5 STK PRES ABS = 29.		VOL HOH GAS = 1.73		STK PRES ABS = 29. VOL HOH GAS = 1.62	
VOL HOH GAS = 2.02		% MOISTURE = 5.53	,	% MOISTURE = 5.17	
4 MOISTUPE = 6.03	•	MOL DRY GAS = 0.94	5	MOL DRY GAS = 0.94	
MOL DRY GAS = 0.94	Į <b>ė</b>	% NITROGEN = 80.40		% NITROGEN = 80.30	
% NITROGEN = 90.30		MOL HT DRY = 29.72		MOL WT DRY = 29.81	
MOL WY DRY = 29.83		MOL NT MET = 29.87		MOL NT NET = 29.20	
MOL NT WET = 29,12		VELOCITY FPS = 15. STACK AREA = 23.76		VELOCITY FPS = 14.	
YELOCITY FPS = 18. STACK AREA = 23.75		STACK ACEM = 23.76 STACK ACEM = 21.81		STACK AREA = 23.75 STACK ACFM = 21,13	
57ACK 90FM = 25.75		* STACK DSCFH = 13,6		* STACK DSCFM = 13.7	
× STACK DEFEM ≠ 16 4		4 ISOKINETIC = 96		% ISOKINETIC = 97	
: ISCNINSTIC : 9:		107			• •
•		107			

### KROM *MASSFLO*

RUN NUMBER

4.10 RIP

VOL MTR STB ?

31.539 RUN

STACK DSCFM ?

16,416.00 RUN

FRONT 1/2 MG ?

484,50

BACK 1/2 MG ?

0.00 RUN

RHE

F GR/DSCF = 0.24

F MG/MMM = 542.49

F LB/HR = 33.36

F = KG/HR = 15.13

### XRSM "MASSFLO"

RUN NUMBER

4,2000 RUH

VOL MIR STD ?

29.4940 PU

STACK DSCFM ?

13,619.0000 RUN

FRONT 1/2 MG ?

203.5000 RUN

BACK 1/2 MG ?

9.0000 PUH

F GR/DSCF = 0.1065

F MG/MMM = 243.6563

F 18/HR = 12.4235

F KG/HR = 5.6380

XROM "MASSFLA

RUN NUMBER

4.30 RUN

VOL MTR STD ?

29.777 RES

STACK DSCFM ?

13,721.00 RUN

FRONT 1/2 MG ?

249.40 RUN

BRCK 1/2 MG ?

0.00 RUN

Į

**8.89** 800

F GR/DSCF = 0.13

F MG/MMM = 295.78

F LB/HR = 15.20

F KG/HR = 6.90

KROM HMETH 5	MERCH THEFTH IT	
RUN NUMBER	PUN NUMBER	XROM THE HIT RUN NUMBER
ONE Boiler 5 PM.	THO Boiler 5	THREE BOILES
METER SON VO	METER SOX Y?	<b>₽</b> Ud
.9930 RIV	.9930 808	METER BOX Y? ,9930 PUM
DELTA HII 2.0400 RUN	DELTA H?	DELTA HT
2,0400 RUN BAR PRESS 7	1.6700 RUN BAR PRESS ?	1.3906 FU"
29,2170 PUN	29.2170 RUN	BAR PRESS 2 29.2170 PUB
METER VOL 2	METER VOL ?	METER VOL 2
44,4900 RUU	40.8220 PUN	47.9530 RIH
MTR TEMP F? 56,0000 PUL	MTR TEMP F? 65.0000 ROY	MTR TEMP F7
% OTHER GAS	% OTHER GAS	70.0000 RITE % OTHER GAS
REMOVED BEFORE	REMOVED BEFORE	REMOVED BEFORE
DRY GAS METER ?	DRY GAS METER ?	DRY GAS METER ?
STATIC HOW IN "	STATIC HOW IN ?	Physics non-the-p
125 <b>0 8</b> 0%	1259 <b>9</b> %	STATIC HOH IN ? 1256 PUR
STACK TEMP.	STACK TEMP.	STACK TEMP.
257,0000 PUN ML. WETER G	266.0000 RUN ML. WATER ?	270.0000 RU
66 5000 P.S.	nc. aaren 7 44.8000 - PU	ME, WATER ? 53,0000 \$00
185. N. ASH = 4,7	IMP. % HOF = 5.0	30.1999 # 0 IMF. % H0H = 5.5
% HSH=6.6	% HOH=5.0	% HOH=5.5
% 602°	ሂ 0021	V 002°
ର୍ମ୍ୟରେ କ୍ୟ	6.3888 ROY	7,3000 PUN
* 0/853w1	N OMYGEM?	% OXYGEM?
11,7999 P.N. - 1,607	13,2000 P(%	12.7000 RES
Fig.	2 66 ? <b>2</b> 66	% (0) ↑ nos
MOT MI CIHELL	MOL WT OTHERS	RUN MOL WT OTHERS
<b>₽</b> j%.	₽°ji;	RUS
Mw3 =29.80	MW6 =29.62	MWd =29.69
MB WET+39,00	MH WET=29.03	MW WET=29,03
90FT F9T3 T	SORT PSTS 0	SORT Para o
9.7054 RUN	8.9111 PW:	9.3832 RUN
TIME MIN ? 68.0000 PIN	TIME MIN ?	TIME MIN 9
60,0000 PIN NOZZLE DIA T	60.0000 R/% Nozzle dir o	60.0006 RIX
.3890 PU	.3800 PUN	NOZZLE DIA ? .3800 RUR
eth Mid INCH 1	STK DIR INCH ?	STK DIA INCH ?
56.0000 RUS	66. <b>900</b> 0 RUH	66 <b>.9999</b> RUY
* VOL MTR STD = 44,370 STK PRES DES = 29,21 VOL HOH GAS = 3,13 % MOISTURE = 6,59 MOL DFY GAS = 6,934 % HITFOGEN = 80,80 MOL HT DRY = 29,80 MOL HT MET = 29,82 VELOCITY FPS = 23,94 STACK AREA = 23,76 STACK PSCFM = 34,126. * STACK PSCFM = 22,916.	* VOL MTR STD = 39.977  STK PRES ABS = 29.21  VOL HOH GAS = 2.11  % MOISTURE = 5.91  MOL DRY GAS = 0.959  % NITROGEN = 30.00  MOL NT DRY = 29.62  MOL NT MET = 29.03  VELOCITY FPS = 21.73  STACK AREA = 23.76  STACK BSCFM = 30.888.	* VOL MTR STD = 42.661 STK PRES ABS = 29.21 VOL HOH GAS = 2.50 % MOISTURE = 5.54 MOL DRY GAS = 9.945 % HITROGEN = 80.00 MOL MT DRY = 29.68 MOL MT MET = 29.03 VELOCITY FPS = 23.14 STACK AREA = 32.76 STACK ACEM = 32.984. * STACK DSCEM = 21.998.
1, 190KINETIC = 197.41	% ISOKINETEC = 96.89	1 ISOKINETIO = 97.5A

XROM "MASSFLO"

RUN NUMBER

5.1000 PUN

VOL MTR STD ?

44.3700 RUN

STACK DSCFM ?

22,916,0000 RUN

FRONT 1/2 MG ?

1,077,7000 RUN

BACK 1/2 MG ?

0.9000 RUS

F GR/DSCF = 0.3748

F MG/MMM = 857.7394

F LB/HR = 73.6250

F KG/HR = 33.3963

YROM "MASSFLO"

RUN NUMBER

5.2000 RUS

VOL MTR STD ?

39,9770 RIS

STACK DSCFM ?

20-888.0000 Rt

FRONT 1/2 MG ?

1,923.4000 RUN

BACK 1/2 MG 2

6.0000 PUS

F GR/DSCF = 0.3951

F MG/MMM = 904.0285

F LB/HR = 70.7311

F KG/HR = 32.0876

Carr

XROM *MASSFLO*

RUN NUMBER

5.3999 20%

VOL MTR STD ?

42.6610 PUN

STACK DOCEM ?

21,998.0000 PUN

FRONT 1/2 MG ?

1,746.7000 RUN

BACK 1/2 MG 2

0.0000 RUN

F GR/DSCF = 0.6318

F MG/MMM = 1,445.8865

F LB/HR = 119,1376

F KG/HR = 54,8488

# APPENDIX L EPA Method 9 Certification

## rine Texas Air Control Board Certifies That

RAYMOND A. CINTRON

Has completed a course conducted by The Texas Air Control Board and has met the requirements for evaluating visible emissions.

EXIS

September 14, 1990

March 15, 1991

Days Officer Days

(This page left blank)